
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview of the NWTC
Programmer’s Handbook

NREL/DOE Workshop on the New
Modularization Framework for the
FAST Wind Turbine CAE Tool

Bonnie Jonkman and John Michalakes

October 8, 2012

2

Presentation Outline

• Purpose and Motivation
• General Information on NWTC CAE Tools

o Copyright and Licensing
o Version Control
o NWTC Policy for Working with Subversion
o Version Naming
o Software Distribution

• Steps for Software Development
o Planning Code Development
o Writing Source Code
o Testing
o Documenting

• Implementing the FAST Modular Framework
o Module Structure
o FAST Registry
o Developer-Provided Subroutines
o Meshes
o Units and Coordinate Systems
o Coupling Modules Together
o Handling Errors
o Handling I/O
o Inter-Language Interfaces

3

Purpose and Motivation

Purpose
• Provide a single reference with

policies, expectations, and guidance
for code developers
o New developers can benefit from

informal guidelines already used at the
NWTC (years of experience)

o Most applies to all NWTC CAE tools
o There is a difference between

developing codes for individual/group
research needs and codes that
thousands of people will use

• Provide guidance for implementing
the new FAST modularization
framework
o Distributed with a template module in

the new FAST modularization framework

Motivation
• The number of CAE-tool developers

(and users) has significantly increased
• Many new developments are being

done simultaneously (e.g., FOAs)

General Information on NWTC
CAE Tools

5

Copyright and Licensing

• Historically, NWTC CAE tools have been distributed
under the Data Use Disclaimer Agreement found on
our web site

• New dual licensing arrangement
o Details are still being discussed by our legal team
o NWTC CAE tools will be released under the GNU General

Public License (GPL) v3.0 open-source license
o Codes may also be offered under other less restrictive

open-source licenses on a per-case basis
– Will allow NREL software to be distributed in commercial codes (or

other uses), when (non-NREL) GPL routines are removed

• All source code files must have copyright and license
agreement information listed at the beginning of the
file

http://wind.nrel.gov/designcodes/disclaimer.html�

6

Version Control

• Subversion (SVN) is an open source automatic software
version control and management system

• What it does:
o Provides developers at NREL and at remote locations access to source

code in a centrally managed and backed-up repository

o Maintains a history of the code, allowing retrieval of earlier versions of
the code with change-logs and differences

o Supports multiple developers working on the code, automatically
detecting and reporting potentially conflicting updates

o Provides notification and an audit trail of code changes so that there’s
a record of every change and who made it

• More information
o FAST Programmer's Handbook

o The SVN manual, with tutorials: http://svnbook.red-bean.com

o Windows Subversion client: http://tortoisesvn.net

7

NWTC Software Development Policy
for working with Subversion

• The Subversion repository for each tool has
three directories: trunk, branches, and tags.

• The trunk must always be stable. No commit or
merge shall break its functionality.

• Each tool has a primary owner who is responsible
for the trunk version. The trunk may not be
modified without the consent of the primary
code owner.

• Development must be done in branches.
• Branches must pass all certification tests prior

to being merged back into the trunk.
• The tool’s primary owner is responsible for reviewing changes from the

branches and merging approved branches back into the trunk.
• Certification tests must be updated to test new features and to test

issues that have been found while debugging code.
• When a tool is released, a copy of the trunk is tagged using its NWTC

version number.

8

Version Naming

• Each program and module (component) should have a version
number

• The form is “v0.00.00a-bjj”
o The number left of the first decimal is for major updates.
o The number between decimals increases for input file changes and

new features
o The number to the right of the last decimal is for minor changes and

bug fixes
o The alpha revision number is present only for alpha versions (not beta)
o The programmer’s initials are present only for alpha versions (not

beta)
• The first thing you change in the source code should be the

version number
• If possible, display the version number when the program runs

and include it in output files

9

Software Distribution

Files typically distributed in an archive on our web site when
software is officially released:

o All of the source files, including a driver program
o Executable code or library (if applicable) for Windows®
o Name(s) and version(s) of all other codes the software uses and

the compiler used to generate the executable code
o A file that indicates the order of compilation for the source files
o A change log that contains the full history of previously released

versions
o A user’s guide and theory manual
o Sample input files and test cases

– Output generated from the sample cases
– A script or program to compare a user’s results from the sample test

cases with the output included in the software distribution
o Any other files that are useful to run, understand, or maintain

the software

Steps for Software
Development

12

Steps: Planning Code Development

• Read the Programmer’s Handbook
• Write your plan for development in a document before you write

any source code
o Write all equations for FAST modules in the form required for the

modularization framework
– Identify algorithms being used
– For loose coupling, identify the time-domain integration scheme

o Identify potential numerical problems and suitable solutions
o Categorize your data

– What inputs are needed from other modules? (Are they available?)
– What outputs will be needed by other modules?
– Are there states and parameters?

o Write the input-output transformation equations for FAST modules
o Create a sample input file (if applicable)

• Discuss the plan with the primary owner and any other
developers it may affect

This step may be the most time-consuming
part of the development process.

13

Steps: General Guidelines for Source Code

• NWTC CAE tools should be able to link with codes
compiled in Fortran 2003 or C/C++.

• NWTC CAE tools should be able to run on Windows®
or Linux platforms.

• NWTC CAE tools should be able to be compiled with
Intel® Visual Fortran (IVF) and gfortran.

• Modules written for the FAST framework must adhere
to the requirements of the template provided.

• Multiple instances of modules must be allowed to
exist simultaneously (dynamically allocatable). No
“global” data.

14

Steps: Writing Source Code

• Use Fortran, C, or C++
o Adhere to the standard for the language being used (Fortran should

use f03 [Fortran 2003])
o If you must use nonstandard code, isolate it in a separate source file
o FAST glue code is written in Fortran
o C and C++ developers of FAST modules will need to use the Fortran

template to call their C/C++ routines (discussed later)
• Use the NWTC Subroutine Library when possible

o Variable KIND definitions
o Mathematical constants (π)
o Writing to the screen
o Opening files
o Reading from input files

• Use the guidelines listed in the Programming Handbook

15

Steps: Testing

• Verification
o Compare results to hand calculations, results of other software,

or other known solutions
• Validation

o Comparing results to test data can be useful to show that a
theory is valid

o Not a substitute for verification
• Version checking

o Make sure that new features do not harm existing capabilities
• Testing new features

o When possible, individual parts of a code should be tested
separately before integrating them into a much larger code

o Create new tests for future version checking

16

Steps: Documentation

• Comments in the source code
o Help developers understand what it is intended to do and how it works
o Include references to additional documentation if necessary

• Change logs
o Provide history of changes and reasons for them
o Help users see what functionality has changed

• Developer logs (Commit logs in Subversion)
o Help developers understand details of what has changed (and the reasons for

them)
• User’s guides

o Help people understand how to use the software
• Theory manuals

o Document and explain equations and algorithms implemented in the code
• Sample input files and test cases

o Help users learn how to use the software (along with user’s guides)
o Explain where input values came from (are there simplifications?)

Software is much easier to understand and maintain when it is
well documented.

Implementing the FAST
Modular Framework

18

Data Structures for the FAST Framework

• All data must be separated into these categories:
o System input
o System output
o System states

– Continuous
– Discrete
– Constraint
– Other (added for code

efficiency, flexibility)
o System parameters
o Initialization input
o Initialization output
o Variables local to a subroutine (cannot retain their values

between subroutine calls)
• All data types except subroutine-local variables must be

defined using the FAST Registry, which will generate the
required source code

Template Data Types
Type Name Purpose
• ModName_InitInputType Initialization input data

• ModName_InitOutputType Initialization output data

• ModName_InputType System inputs

• ModName_OutputType System outputs

• ModName_ParameterType System parameters

• ModName_ContinuousStateType Continuous states
• ModName_DiscreteStateType Discrete states

• ModName_ConstraintStateType Constraint states

• ModName_OtherStateType Optimization/other states

20

Subroutines for the FAST Framework

 Template Requirements Loose
Tight

(Time Marching)
Tight

(Linearization)
 Initialize/End Subroutines
 • ModName_Init   
 • ModName_End   
 Time-Stepping Subroutines
 • ModName_CalcConstrStateResidual  
 • ModName_CalcOutput   
 • ModName_UpdateStates 
 • ModName_CalcContStateDeriv  
 • ModName_UpdateDiscState  
 Jacobian Subroutines
 • ModName_JacobianPInput  
 • ModName_JacobianPContState 
 • ModName_JacobianPDiscState 
 • ModName_JacobianPConstrState  
 Pack/Unpack Subroutines
 • ModName_Pack   
 • ModName_Pack{TypeName*}   
 • ModName_Unpack   
 • ModName_Unpack{TypeName*}   
 Copy/Destroy Subroutines
 • ModName_Copy{TypeName*}   
 • ModName_Destroy{TypeName*}   

*
TypeName is the name of the data type to be operated on; it is one of the following values: Param, Input,

Output, ContState, DiscState, ConstrState, OtherState, POutputPInput, PContStatePInput, PDiscStatePInput,
PConstrStatePInput, POutputPContState, PContStatePContState, PDiscStatePContState,
PConstrStatePContState, POutputPDiscState, PContStatePDiscState, PDiscStatePDiscState,
PConstrStatePDiscState, POutputPConstrState, PContStatePConstrState, PDiscStatePConstrState,
PConstrStatePConstrState

• Template for the
subroutines is
provided with the
Handbook

• Modules may have
other internal
(private) subroutines
or have their own
“sub-modules”

• All of the
{TypeName}
subroutines will be
auto-generated with
FAST Registry

21

Fortran Module Structure

• Contains
o all data type definitions

o copy/destroy subroutines

o pack/unpack subroutines for
individual data types
({TypeName} subroutines)

• The source code for the
module is automatically
generated using the FAST
Registry

• USEs ModuleName_Types
• Contains

o initialize/end subroutines
o time-stepping subroutines
o Jacobian subroutines
o pack/unpack subroutines for

module (not individual data
types)*

• Developers must use the
template provided with the
handbook to implement this
module

MODULE ModuleName_Types

MODULE ModuleName

* We are looking into the possibility of also generating this with the
FAST Registry and including it in the ModuleName_Types MODULE.

22

FAST Registry

• Table-based automatic code generation of large
sections of FAST module interface data
structures and code

• Adapted from NCAR WRF model software
framework
o “Active” data-dictionary generates ~300K lines of

interface, I/O, and parallelization code from concise
user-editable table listing data structures and
properties

o Automates time consuming and error-prone
programming tasks

o Changes to Registry propagate to hundreds of places
in the code on recompile

23

FAST Registry

FAST Registry components
o Single master text file, or “Registry File”

– Contains entries, one line per data element

– Quick reference for data names, types, dimensionality (Data Dictionary)

– Able to include other Registry files, allowing one Registry file per module; easily extendable

o Registry program
– Compiled and called to process Registry when FAST framework is compiled

– Reads Registry and generates a separate source file ModuleName_Types.f90
 MODULE ModuleName_Types, defining all defined data types required by FAST interface
 Subroutines to copy, destroy, pack, and unpack types
 Subroutines to pack and unpack modules

– Generates wrapper routines for inter-language interfaces to non-Fortran modules

24

Registry.txt
Top level FAST Registry file: Registry.txt

Incorporate Registry files for individual modules
include Registry-ModuleNameX.txt
include Registry-ModuleNameY.txt
 ...
Add more as new modules contributed to FAST
~

Part of Registry file: Registry-ModuleNameX.txt
 ...
..... Input argument type ...
Define inputs that are contained on the mesh here:
typedef ModuleNameX/ModNmX InputType MeshType MeshedInput - - - "An input mesh"
typedef ^ ^ ReKi aScalar - - - "Scalar variable" "units"
typedef ^ ^ ^ anArray {:} - - "Allocatable array" "units"

..... Output argument type ..
typedef ^ OutputType MeshType MeshedOutput - - - "An output mesh"
typedef ^ ^ ReKi bScalar - - - "Scalar variable" "units"
typedef ^ ^ ^ bArray {2}{3} - - "2 by 3 2-D array" "units"
 ...

Keyword (typedef means "define field in a derived data type")

Module longname/shortname

Name of derived data type containing field

Type of field Name of field

Unused

Description of field Units of field

ditto

Click here to see generated code

Dimensions of field

Control

25

FAST Framework: Initialization

• Subroutine ModName_Init
o Designed to be called one time at the beginning of each simulation for

each instance of the module
o Performs initialization tasks for the module, including

– Reading input files
– Defining parameters
– Setting initial values of states
– Setting up any meshes

o Returns the time increment for loose coupling and discrete states
• Meshes that follow meshes from other modules should be

initialized in an undeflected position to allow the mapping
between meshes to be set up properly.

26

FAST Framework: End

Subroutine ModName_End
o Designed to be called one time for each instance

of the module at the end of a simulation

o Its main tasks are to release memory and close
files.

27

FAST Framework: Time-Stepping Subroutines

Time-stepping routines
o Purpose is to compute outputs and update the states

(continuous, discrete, and constraint)
o Glue code calls different routines based on choice of

coupling scheme (tight or loose)
– Module updates states in loose coupling
– Glue code updates states in tight coupling

o Current simulation time is input as a double-precision
real number (DbKi)

 Template Requirements Loose
Tight

(Time Marching)
Tight

(Linearization)
 Time-Stepping Subroutines
 • ModName_CalcConstrStateResidual  
 • ModName_CalcOutput   
 • ModName_UpdateStates 
 • ModName_CalcContStateDeriv  
 • ModName_UpdateDiscState  

28

FAST Framework: Time-Stepping Subroutines

Subroutine ModName_CalcConstrStateResidual
o Solves for the residual of the constraint state

equations

o Should return zero when the constraint-state
guess is correct

o Called from the glue code in tight coupling
schemes

29

FAST Framework: Time-Stepping Subroutines

Subroutine ModName_CalcContStateDeriv
o Calculates the first time derivatives of the

continuous states

o Called from the glue code in tight coupling
schemes

30

FAST Framework: Time-Stepping Subroutines

Subroutine ModName_UpdateDiscState
o Updates the discrete states to their values at the

next coupling interval

o Called from the glue code in tight coupling
schemes

o Called at the coupling interval defined in the
module initialization

31

FAST Framework: Time-Stepping Subroutines

Subroutine ModName_UpdateStates
o Solves for the constraint states at the current simulation time
o Updates the continuous and discrete states to their values at the

next coupling interval
o Called from the glue code in a loose coupling scheme
o Called at the coupling interval defined in the module initialization
o If the module is able to be tightly coupled, this routine can call

the tight coupling routines: ModName_CalcConstrStateResidual,
ModName_CalcContStateDeriv, and ModName_UpdateDiscState

32

FAST Framework: Time-Stepping Subroutines

Subroutine ModName_CalcOutput
o Computes the system outputs at the current

simulation time

o Called from the glue code in tight and loose
coupling schemes

33

FAST Framework: Jacobian Subroutines

• Jacobian Subroutines
o Each subroutine

computes four partial
derivatives (optional arguments)

o Called by the glue code in tight coupling schemes
– Four partial derivatives required for tightly coupled time

marching schemes: ∂Z/∂z, ∂Z/∂u, ∂Y/∂z, and ∂Y/∂u
– All 16 partial derivatives are required for linearization (we

recommend defining all so the module can be linearized)

• Implementation of Jacobians
o Analytical derivation and implementation gives

best numerical convergence performance
o Numerical implementations are acceptable

Template Requirements Loose
Tight

(Time Marching)
Tight

(Linearization)
Jacobian Subroutines
• ModName_JacobianPInput  
• ModName_JacobianPContState 
• ModName_JacobianPDiscState 
• ModName_JacobianPConstrState  

34

FAST Framework: Jacobian Subroutines

Subroutine ModName_JacobianPInput
o Calculates four Jacobians: the output, continuous-

state, constraint-state, and discrete-state equations
with respect to the system inputs

o Called by the glue code in tight coupling schemes
o Jacobians are optional arguments

– Only ∂Z/∂u and ∂Y/∂u are required for tightly coupled time
marching simulation

– All four are required for linearization

35

FAST Framework: Jacobian Subroutines

Subroutine ModName_JacobianPConstrState
o Calculates four Jacobians: the output, continuous-

state, constraint-state, and discrete-state equations
with respect to the constraint states

o Called by the glue code in tight coupling schemes
o Jacobians are optional arguments

– Only ∂Z/∂z and ∂Y/∂z are required for tightly coupled time
marching simulation

– All four are required for linearization

36

FAST Framework: Jacobian Subroutines

Subroutine ModName_JacobianPContState
o Calculates four Jacobians: the output, continuous-

state, constraint-state, and discrete-state
equations with respect to the continuous states

o Used only for linearization

37

FAST Framework: Jacobian Subroutines

Subroutine ModName_JacobianPDiscState
o Calculates four Jacobians: the output, continuous-

state, constraint-state, and discrete-state
equations with respect to the discrete states

o Used only for linearization

38

FAST Framework: Pack/Unpack Subroutines

• FAST Framework specifies that each module should provide a pack and
unpack routine for each derived data type (Table 2, Programmer's
Handbook) and for the module type as a whole
o Put data in a form easily used for vector/matrix operations (single data type)

o Put data in a form that can be read/written to restart files

• Arguments
o Type to be packed/unpacked

o Pointers to 3 buffers: 1-D arrays of real, double, and integer

• Packing moves data typebuffers, unpacking reverses
• Pack routines ALLOCATE the memory for the buffers; it is up to caller to

DEALLOCATE buffers (unpack routines do not deallocate)

 Template Requirements Loose
Tight

(Time Marching)
Tight

(Linearization)
 Pack/Unpack Subroutines
 • ModName_Pack   
 • ModName_Pack{TypeName*}   
 • ModName_Unpack   
 • ModName_Unpack{TypeName*}   

39

FAST Framework: Meshes

• FAST framework provides TYPE(MeshType)
• Used for defining point, line, surface, volume meshes

that need to be passed as input or output to a FAST
component

• Represented as elements constructed from nodes
with associated fields:
o Position
o Displacement, rotational velocity, orientation, translational

velocity, force, moment, added mass
o Scalar fields

• Defined in developer-provided ModName_Init
routine

• More on meshes shortly…

40

FAST Framework: Units

• Use SI base units for passing data through the
module interface
o kilograms, meters, seconds, and radians

• Use the following units for MeshType fields
of forces, moments, and added mass:
o per unit length for line elements

o per unit area for surface elements

o per unit volume for volume elements

o lumped (concentrated) for point elements

41

FAST Framework: Coordinate Systems

The coordinate positions
and loads passed
between modules in the
FAST framework are
assumed to be relative
to a global coordinate
system.

The global coordinate system used for
interfaces in the FAST modular framework

42

FAST Framework: Coupling Modules Together

• NREL will develop the code that couples modules together (glue
code)
o Module developers must follow the framework specifications and

Programming Handbook guidelines
o Time may not always be advancing
o Unless otherwise specified, we cannot guarantee that the glue code

will call subroutines in a particular order
• Tasks of the glue code

o Interconnect individual modules
o Derive inputs from outputs (module developer provides the

equations)
o Maps spatial interface meshes (may be non-matching) using nearest-

neighbor locations for transfer of output data to input data
o Drive the overall solution forward
o Integrate the coupled system equations (in tight coupling schemes

only)
o Drive linearization calculations (in tight coupling schemes only)

43

FAST Framework: Handling Errors

• The glue code will handle all errors (possibly
write to screen or log file, call routines to end
modules, etc.)

• Do not allow the program to end in a module
o Trap errors and return error code to calling (driver)

program.
o ErrStat argument is an integer parameter from the

NWTC Library indicating severity:
– ErrID_None, ErrID_Info, ErrID_Warn, ErrID_Severe, or

ErrID_Fatal
o ErrMsg is a string of characters describing the error

(empty if no error occurred)

44

FAST Framework: Handling I/O

• Details still being worked on
• Current recommendations:

o Keep I/O consistent with FAST’s current look and feel
– Modules read own input files
– Modules have option to write output files

o Keep I/O in separate subroutines and/or modules that can easily be modified
o Possibly define and use a derived data type containing all input file

information for the module
– Flexibility: could be populated by either the module or the glue code (added to the

ModName_InitInputType)
– Error checking on the input file data should occur in a separate subroutine in the module

o For a single master output file, add variable called WriteOutput to
ModName_OutputType data type

– WriteOutput will not appear in Jacobians
– Glue code may have to interpolate this array for time intervals consistent across all

modules

45

Inter-Language Interfaces

• FAST Framework is Fortran 2003 but interfaces to
non-Fortran (C, C++) modules through "wrappers"
o Developer provides Fortran versions of the FAST module

interface routines (Table 1, Programmer’s Handbook)
o Pack/unpack the types passed into/out of buffers, which

are 1-D arrays of reals, doubles, integers
o Pass buffers to developer code subroutines
o Developer code packs/unpacks these into/out of its own

data structures
o Some overhead from copying

• Fortran side of wrappers auto-generated (coming
soon)

Thanks for your attention

	Slide Number 1
	Presentation Outline
	Purpose and Motivation
	Slide Number 4
	Copyright and Licensing
	Version Control
	�NWTC Software Development Policy�for working with Subversion
	Version Naming
	Software Distribution
	Slide Number 10
	Steps: Planning Code Development
	Steps: General Guidelines for Source Code
	Steps: Writing Source Code
	Steps: Testing
	Steps: Documentation
	Slide Number 17
	Data Structures for the FAST Framework
	Subroutines for the FAST Framework
	Fortran Module Structure
	FAST Registry
	FAST Registry
	Registry.txt
	FAST Framework: Initialization
	FAST Framework: End
	FAST Framework: Time-Stepping Subroutines
	FAST Framework: Time-Stepping Subroutines
	FAST Framework: Time-Stepping Subroutines
	FAST Framework: Time-Stepping Subroutines
	FAST Framework: Time-Stepping Subroutines
	FAST Framework: Time-Stepping Subroutines
	FAST Framework: Jacobian Subroutines
	FAST Framework: Jacobian Subroutines
	FAST Framework: Jacobian Subroutines
	FAST Framework: Jacobian Subroutines
	FAST Framework: Jacobian Subroutines
	FAST Framework: Pack/Unpack Subroutines
	FAST Framework: Meshes
	FAST Framework: Units
	FAST Framework: Coordinate Systems
	FAST Framework: Coupling Modules Together
	FAST Framework: Handling Errors
	FAST Framework: Handling I/O
	Inter-Language Interfaces
	Slide Number 47

