
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Spatial Meshes

NREL/DOE Workshop on the New
Modularization Framework for the
FAST Wind Turbine CAE Tool

John Michalakes and Michael Sprague

October 8, 2012

k

Spatial Meshes
• FAST Mesh data type

– Defines points, lines, surfaces, and volumes and operations thereon
• Standard isoparametric mapping closely related to FEA
• Elements and numbers define unique interpolation
• Optional midside nodes allow curved line/surface with quadratic polynomials

– Arrays associated with each mesh node
• Position in coordinate system (x,y,z)
• Fields: displacement, force, rotational velocity, translational velocity,

moment, … , scalars
– Required for representing meshed data within Input and Output data

types used as arguments to FAST components

2

k

• MeshType data type:
– NNodes giving the finite number of logical nodes (points in space)
– RemapFlag (discussed later)
– Fields: vectors of length NNodes that store values associated at each

node
• Always defined: Position (NNodes 3-tuples: x,y,z coordinates of each node)
• May also be defined:

– Displacement (NNodes 3-tuples: x,y,z displacements at each node)
– Orientation (NNodes 9-tuples: Direction Cosine Matrix)
– Rotational velocity (NNodes 3-tuples)
– Translational velocity (NNodes 3-tuples)
– Arbitrary number of scalars (NScalars by NNodes array)

– Connectivity information (stored as integer vectors) that organizes the
nodes into elements

Independent Spatial Discretizations

Lines Tetrahedra

Triangles Hexahedra

Quadrilaterals Etc.

3

k

• Definition
– Declaration of meshes
– Creation of mesh instances and allocation of fields
– Spatio-location of mesh nodes
– Construction of nodes into elements
– Committing the mesh

• Use
– Setting and accessing fields
– Copying meshes
– Packing mesh data
– Destroying meshes

Operations on meshes

4

Operations on meshes: Definition

• Declaration
– Meshes are defined in Registry to

generate declarations of
component-contributed MODULE

• Allocation
– An instance of a mesh is created

with a call to CreateMesh in
component- supplied Init routine

• Construction
– Connectivity is established by a

series of calls to Join routines,
also in the component-supplied
Init routine

Part of Registry file: Registry-ModuleNameX.txt
 ...
..... Input argument type ...
Define inputs that are contained on the mesh here:
typedef ModuleNameX/ModNmX InputType MeshType Blades {:} - - "Allocatable array of blade meshes"
typedef ^ ^ ReKi aScalar - - - "Scalar variable" "units"
typedef ^ ^ ^ anArray {:} - - "Allocatable array" "units"

..... Output argument type ..
typedef ^ OutputType MeshType Blades {:} - - "Allocatable array of blade meshes"
typedef ^ ^ ReKi bScalar - - - "Scalar variable" "units"
typedef ^ ^ ^ bArray {2}{3} - - "2 by 3 2-D array" "units"
 ...

Click here to see generated code
5

Operations on meshes: Definition

• Declaration
– Meshes are defined in Registry to

generate declarations of
component-contributed MODULE

• Allocation
– An instance of a mesh is created

with a call to MeshCreate or
MeshCopy in component-supplied
Init routine

• Construction
– Connectivity is established by a

series of calls to Join routines,
also in the component-supplied
Init routine

TYPE(ModName_InputType) :: InData
TYPE(ModName_OutputType) :: OutData
 . . .
DO I = 1, SIZE(InData%Blades)
 CALL MeshCreate (InData%Blades(I) ! New mesh to be created &
 ,IOS=COMPONENT_INPUT ! It will be used as output from my component &
 ,NNodes=5 ! It will contain five nodes, total &
 ,Orientation=.TRUE. ! It will convey orientation &
 ,Translation=.TRUE. ! It will convey translation &
)

6

Indata%Blades(I)

NNodes = 5

Position

1
2
3
4

2
3
4
5

N
lin

e2
 =

 4

P1 P2

Orientation

Translation

Operations on meshes: Definition

• Declaration
– Meshes are defined in Registry to

generate declarations of
component-contributed MODULE

• Allocation
– An instance of a mesh is created

with a call to MeshCreate or
MeshCopy in component-supplied
Init routine

• Construction
– Connectivity is established by a

series of calls to Join routines,
also in the component-supplied
Init routine

TYPE(ModName_InputType) :: InData
TYPE(ModName_OutputType) :: OutData
 . . .
DO I = 1, SIZE(InData%Blades)
 CALL MeshCreate (InData%Blades(I) ! New mesh to be created &
 ,IOS=COMPONENT_INPUT ! It will be used as output from my component &
 ,NNodes=5 ! It will contain five nodes, total &
 ,Orientation=.TRUE. ! It will convey orientation &
 ,Translation=.TRUE. ! It will convey translation &
)

7

Indata%Blades(I)

NNodes = 5

Position

1
2
3
4

2
3
4
5

N
lin

e2
 =

 4

P1 P2

Orientation

Translation

1

2
3 N

• Declaration
– Meshes are defined in Registry to

generate declarations of
component-contributed MODULE

• Allocation
– An instance of a mesh is created

with a call to MeshCreate or
MeshCopy in component-supplied
Init routine

• Construction
– Connectivity is established by a

series of calls to Join routines,
also in the component-supplied
Init routine

TYPE(ModName_InputType) :: InData
TYPE(ModName_OutputType) :: OutData
 . . .
DO I = 1, SIZE(InData%Blades)
 CALL MeshCreate (InData%Blades(I) ! New mesh to be created &
 ,IOS=COMPONENT_INPUT ! It will be used as output from my component &
 ,NNodes=5 ! It will contain five nodes, total &
 ,Orientation=.TRUE. ! It will convey orientation &
 ,Translation=.TRUE. ! It will convey translation &
)
 ...

 CALL MeshCopy (InData%Blades(I) ! Existing mesh &
 ,OutData%Blades(I) ! New mesh to be created as a sibling &
 ,CtrlCode=MESH_SIBLING ! It will be used as output from my component &
 ,Force=.TRUE. ! It will convey forces &
)

Operations on meshes: Definition
Meshes may be unique or may have “siblings” to avoid
duplicating position and connectivity data between
input and output to a component.

8

Indata%Blades(I) OutData%Blades(I)

NNodes = 5

Position

1
2
3
4

2
3
4
5

N
lin

e2
 =

 4

P1 P2

Orientation

Translation

Force

Operations on meshes: Definition

• Spatio-location of nodes
– Set the X, Y, Z coordinates of

each node in the Mesh

1

2
3 N

9

DO I = 1, SIZE(InputData%Blades(I))
 . . .
 ! connect the nodes into 2-node line elements
 DO INode = 1, InputData%Blades(I)%NNodes
 READ(IU,*) Pos(1:3)
 CALL MeshPositionNode(&
 InputData%Blades(I), &
 INode=INode, &
 Pos=Pos(1:3), &
 ErrStat=ErrStat, &
 ErrMess=ErrMess)
 END DO

Operations on meshes: Definition

• Spatio-location of nodes
– Set the X, Y, Z coordinates of

each node in the Mesh

DO I = 1, SIZE(InputData%Blades(I))
 . . .
 ! connect the nodes into 2-node line elements
 DO INode = 1, InputData%Blades(I)%NNodes
 READ(IU,*) Pos(1:3)
 CALL MeshPositionNode(&
 InputData%Blades(I), &
 INode=INode, &
 Pos=Pos(1:3), &
 ErrStat=ErrStat, &
 ErrMess=ErrMess)
 END DO

1

2
3 N

(x1,y1,z1)

(x2,y2,z2)
(x3,y3,z3) (xn,yn,zn)

10

Operations on meshes: Definition

• Spatio-location of nodes
– Set the X, Y, Z coordinates of

each node in the Mesh
• Construction

– Connectivity established using
calls to MeshConstructElement
from the component-supplied
ModName_Init routine
• Join individual points into an

element and elements as
neighbors

• Spaces must agree between
elements

DO I = 1, SIZE(InputData%Blades(I))
 . . .
 ! connect the nodes into 2-node line elements
 DO INode = 1, InputData%Blades(I)%NNodes-1
 CALL MeshConstructElement(&
 InputData%Blades(I), &
 ELEMENT_LINE2, &
 P1=INode, P2=INode+1, &
 ErrStat=ErrStat, &
 ErrMess=ErrMess)
 END DO

1

2
3 N

1

(x1,y1,z1)

(x2,y2,z2)
(x3,y3,z3) (xn,yn,zn)

11

Operations on meshes: Definition

• Spatio-location of nodes
– Set the X, Y, Z coordinates of

each node in the Mesh
• Construction

– Connectivity established using
calls to MeshConstructElement
from the component-supplied
ModName_Init routine
• Join individual points into an

element and elements as
neighbors

• Spaces must agree between
elements

• Committing the mesh
– precompute traversal information,

neighbor lists and other
information

CALL CommitMesh(InputData%Blades(I),ErrStat,ErrMess)

1

2
3 N

1

(x1,y1,z1)

(x2,y2,z2)
(x3,y3,z3) (xn,yn,zn)

12

Link to simple example

k

• Setting and accessing fields in a mesh
– Fields are accessed directly from the mesh itself

OutData%Mesh%force(inode) = …
– Functions for iterating over elements in a mesh

• MeshNextElement (start a traversal or provide next element)
• MeshNextElemNeighbor (start a traversal over adjacent elements)
• MeshElemNumNeighbors (returns number of neighboring elements)

– These return information that allows code to iterate over nodes
in a given element
• The index and kind of element in the mesh
• The number of nodes in that element

Operations on meshes: Usage

13

k

• Copying meshes
– Create an all new copy of a mesh
– Create a sibling of a mesh
– Update position and fields of a mesh from another mesh

• Packing mesh data
– Works the same as packing and unpacking of FAST derived data

types

• Destroying meshes
– Deallocate memory

Operations on meshes: Usage

14

k

Coupling considerations using meshes

• Static, Sliding, and Deforming Meshes
– The mapping between module interface meshes is

performed at any time step when the RemapFlag
variable is set to TRUE in the ModMesh module
• In cases where the interface meshes do not move relative to

each other, the mapping should only be done once at
initialization.

• Either module might request a new mapping in the event of
significant mesh distortion or significant relative motion
between interface meshes.

• In cases where an interface mesh in a module will follow an
interface mesh of another module, both meshes should be
initialized in the undeflected position, and RemapFlag should
be set to FALSE after initialization.

Status

• Prototype ModMeshType and ModMesh modules being
developed

• Prototype application for meshes and Registry
– Aerodyn in new Framework

• Programmer’s handbook and reference documentation

16

	Slide Number 1
	Spatial Meshes
	Independent Spatial Discretizations
	Operations on meshes
	Operations on meshes: Definition
	Operations on meshes: Definition
	Operations on meshes: Definition
	Operations on meshes: Definition
	Operations on meshes: Definition
	Operations on meshes: Definition
	Operations on meshes: Definition
	Operations on meshes: Definition
	Operations on meshes: Usage
	Operations on meshes: Usage
	Coupling considerations using meshes
	Status

