
DRAFT
Instructional and Theory Guide to the Mooring Analysis Program

Phase I: The Multi–Segmented Quasi–Static Model

Marco D. Masciola

MAP version 0.87.06a–mdm

DRAFT

2

DRAFT
Contents

Executive Summary 5

1 Prerequisites 7
1.1 Document Organization and Usage . 8

2 Overview of Features in the MSQS Model 9
2.1 Document Scope . 9
2.2 Applications of the Multi–Segmented, Quasi–Static Model . 10

3 Multi–Segmented, Quasi–Static Theory 11
3.1 Analytical Solution to the Single–Line Cable . 11

3.1.1 Extending the Analytical Solution to a Cable in Contact with the Seabed 12
3.2 The MSQS Theory . 14

3.2.1 Multi–Segmented Line Kinematics . 15
3.2.2 Iterative Process to Achieve Static Equilibrium . 16

4 Input File Commands 19
4.1 MAP Input File Parameters . 19

LineType . 20
Diam . 20
RhoInAir . 20
EA . 20
CB . 20
Type . 20
X, Y, Z . 20
M . 20
B . 21
FX, FY, FZ . 21
UnstrLen . 21
NodeAnch . 21
NodeFair . 21
Flags . 21

4.2 MAP Input File Run–Time Flags . 21
(Pound Symbol) . 21

4.2.1 Line Flags . 22
LAY LENGTH . 22
LINE TENSION . 22
PLOT . 22
OMIT CONTACT . 22
X FORCE, Y FORCE, Z FORCE . 23

4.3 MAP Output File Format . 24
4.4 MAP Input File Rules . 25

4.4.1 Node Rules . 25

3

DRAFT

4 CONTENTS

4.4.2 Line Rules . 27
4.4.3 Solver Options . 27

5 Source Code Structure 29
5.1 MAP Classes . 29

u(t) – Inputs . 29
z(t) – Constraint States . 30
y(t) – Output States . 30
p(t) – System Parameters . 31
d(t) – Other States . 31
Z(t) – Constraint Equations . 31
Y(t) – Output Equations . 31

5.2 MAP Taxonomy . 31
5.2.1 Subordinate MAP Objects . 32
5.2.2 The Dichotomy Between Nodes and Elements . 32

5.2.2.1 The Node Class . 33
5.2.2.2 The Element Class . 34

5.3 MAP Functions: The Program Entry Points . 36
5.3.1 MSQS UpdateStates() and the MAP Tight Coupling Solution Strategy 37

6 Python Bindings for MAP 41
6.1 An Example Application . 41

6.1.1 Model Initialization . 42
6.1.2 Executing the Program . 43
6.1.3 Python Operations on MAP Objects . 43
6.1.4 Terminating MAP . 44

A Python Read Function 49

DRAFT
Executive Summary

This manual outlines the theory, features, and instructions on how to use the Mooring Analysis Program
(MAP). For Phase I of the MAP project, the goal is to create a tool to analyze the steady–state forces on a
mooring system at equilibrium. The Multi–Segmented, Quasi–Static (MSQS) mooring model is developed
out of the need for a tool to model the stiffness and static forces of practical mooring systems with arbitrary
connection geometries and profiles. This program is developed in C++, compiled as a library, and will
include wrappers exposing MAP entry points to Python and Fortran. MAP is compiled with the Portable,
Extensible Toolkit for Scientific Computation1 (PETSc) open–source numerical library. PETSc includes
a Scalable Nonlinear Equations Solvers (SNES) suitable for profiling and solving ill–conditioned problems
commonly arising in MSQS models. As information is gathered on the best way to solve these problems,
PETSc will be replaced with small, custom–built solvers. The MSQS module will be the initial component
developed in MAP. Through the creation of this tool, the groundwork will be formed to begin development
of a finite–element component to MAP. The premise is to fully develop the MSQS forward using the essential
building blocks needed for an FEA cable program. Once the MAP program interface is defined, the FEA
element to MAP will be developed. In its present form, this document covers Phase I of the MAP initiative.

1http://www.mcs.anl.gov/petsc/

5

http://www.mcs.anl.gov/petsc/

DRAFT

6 CONTENTS

DRAFT
Chapter 1

Prerequisites

The following packages are needed to compile and run MAP:

• NumPy (optional if running from Python)

• Matplotlib (optional if plotting in Python)

• Boost.Python

• PETSc

MAP was tested on the following operating systems:

• Ubuntu v. 11.04, v 12.04LTS

• Mint v. 14.1

• Windows 7

• OS X 10.8.5 (Mountain Lion)

For those wishing to compile MAP on their own machines, the Boost and PETSc libraries are configured
with the following options:

Boost Build
./bootstrap.sh --with-libraries=python

./b2 --toolset=gcc --build-type=complete --with-python --layout=versioned cxxflags=-fPIC

Note: MAP was tested on Python 2.7.1 and 2.7.2. If you want to compile MAP with Python interoperability,
then declare the ‘WITH PYTHON preprocessor definition the makefile/project setup.

PETSc Build
./configure --with-cc=gcc --with-fc=0 --with-clanguage=cxx --with-shared-libraries=1 --with-mpi=0
--download-f2cblaslapack

7

DRAFT

8 CHAPTER 1. PREREQUISITES

1.1 Document Organization and Usage
This manual is written to be a user’s guide and theory handbook in a single document. Though it is not
compulsory to read chapters in succession, doing so will better describe the abilities and current limitations
of MAP.

• Chapter 2 discusses the motivation for creating MAP, and which problems can be solved with the
MSQS model.

• Chapter 3 describes the MSQS theory in detail and the solution process used to find the static mooring
line profile.

• Chapter 4 describes the MAP input file format, run–time options and output file conventions. For
FAST users and readers seeking a crash course on how to use MAP, Chapter 3 fits this purpose best.

• Chapter 5 is written for developers and describes the MAP program entry points, features of MAP
classes, and the overall structure of the program. Casual users of MAP may skip Chapter 4 and proceed
to Chapter 5 without loss of continuity

• Chapter 6 presents the Python features in MAP, and how one can integrate MAP into a Python
program.

DRAFT
Chapter 2

Overview of Features in the MSQS
Model

The purpose of the Multi–Segmented, Quasi–Static (MSQS) model is to extend the utility single line
quasi–static, continuous–analytical cable models so realistic multi–line mooring schemes can be analyzed
statically. This model can also be used to derive the stiffness coefficients for a multi–member cable system.
The in–scope objectives of the MSQS module includes:

1. Development of a multi–segmented, quasi–static mooring solver for standalone calculations and design
analysis. This program can solve multi–line mooring lines with arbitrary connection configurations
and account for seabed contact and friction.

2. Use Python as a means to dynamically interact with MAP to give the program an interpretive atmo-
sphere. This gives users the flexibility to call the MAP program functions, create and initialize data
structures, pass data to the MAP solvers, check the format of the input deck, and plot mooring line
profiles from Python. The core program solvers, solution strategy and class methods and attributes
will remain in C++.

3. Developing the MSQS module to fit within the new FAST modularization framework [3].

4. Remain open–source.

2.1 Document Scope
This document will concentrate on developing the program framework, refine the MSQS theory, demonstrate
the program operation, and publish the MAP input file rules and requirements. As such, this work addresses
the following topics:

• The basic underlying theory for the single–line, quasi–static model.

• Presentation of a method to combine several single–line elements to form one common multi–segmented
mooring system.

• Definition of the input parameters specified in the MSQS input file.

• High level description of the C++ program architecture.

• An example script to call the MAP program from Python.

9

DRAFT

10 CHAPTER 2. OVERVIEW OF FEATURES IN THE MSQS MODEL

2.2 Applications of the Multi–Segmented, Quasi–Static Model
The quasi–static model is derived from a set of closed–form analytical solutions of a continuous cable with
homogeneous properties [2]. Such models account for the effects of distributed cable mass, strain and
cable elasticity to provide the line profile and effective forces for a cable suspended at steady–state (static
equilibrium). Thus, forces arising from inertia, bending, torsion, viscous drag and internal damping are
neglected. Still, the quasi–static representation is a reasonable approximation to the mooring line restoring
forces in lieu of comprehensive FEA models [1].

The theory behind single line quasi–static mooring representations are sufficiently described in the literature
[2,4,10,12]. Though these models have wide spread utility [5,9,11], this representation is limited to single–line
mooring elements, Figure 2.1(a). In marine applications, a spread mooring design is often adopted in most
practical mooring designs. Though great advancements were taken in Peyrot and Goulois [10] to demonstrate
a solution to the multi–segmented cable, an updated framework with a modular design and compliance with
the FAST framework is needed. The multi–segmented mooring line representation depicted in Figure 2.1(b)
is representative of the mooring profile sought with the MSQS model.

−100

0

100

200

300

400

500

600

−50

0

50

−400

−350

−300

−250

−200

−150

−100

−50

0

50

X Cable Excusion [m]Y Cable Excusion [m]

D
ep
th
B
el
ow

M
S
L
[m
]

(a) Single line quasi–static representation.

−100

0

100

200

300

400

500

600

−50

0

50

−400

−350

−300

−250

−200

−150

−100

−50

0

50

X Cable Excusion [m]Y Cable Excusion [m]

D
ep
th
B
el
ow

M
S
L
[m
]

(b) Multi–segmented quasi–static representation.

Figure 2.1: In (a), the capabilities built into FAST’s [4] current mooring line representation is depicted. With
this representation, the mooring line is modeled as a single line; hence, the resulting restoring force supplied to the
platform is restricted to the plane of the mooring line. In contrast, a multi–segmented line can model a fairlead
force with components in the X, Y and Z directions, (b).

DRAFT
Chapter 3

Multi–Segmented, Quasi–Static
Theory

3.1 Analytical Solution to the Single–Line Cable
The solution to the common closed–form analytical equation for a single–line cable hanging between two
fixed points have been derived independently in numerous works1 [2, 12]:

x (s) =
H

ω

ln
VA + ωs

H
+

√
1 +

(
VA + ωs

H

)2
− ln

VA
H

+

√
1 +

(
VA
H

)2
+

Hs

EA
(3.1a)

z (s) =
H

ω

√1 +

(
VA + ωs

H

)2

−

√
1 +

(
VA
H

)2
+

1

EA

(
VAs+

ωs2

2

)
(3.1b)

With the aid of Figure 3.1, we define the mooring line properties as:

• EA is the cross–section axial stiffness.

• L is the unstretched line length.

• ω = gA (ρc − ρ) is the weight per unit length in the submerged fluid, where ρc is the cable density, ρ
is the fluid density, and g is the acceleration due to gravity.

• H and V are the applied horizontal and vertical force at the fairlead.

• HA and VA are the anchor horizontal and vertical forces, respectively.

• x (s) and y (s) are the cable profile in the horizontal and vertical planes (respectively) at distance s
along the line.

Recognizing the vertical force changes proportionately with the cable mass density, and that no horizontal
forces are acting on the cable between the anchor and fairlead, one can write:

HA = H (3.2a)

VA = V − ωL (3.2b)

1Note that ln
(
x+

√
1 + x2

)
= sinh−1 (x)

11

DRAFT

12 CHAPTER 3. MULTI–SEGMENTED, QUASI–STATIC THEORY

The horizontal l and vertical h fairlead displacement can be found by substituting s = L in Eqs. (3.1a) and
(3.1b) to yield:

l =
H

ω

ln
V
H

+

√
1 +

(
V

H

)2
− ln

V − ωL
H

+

√
1 +

(
V − ωL
H

)2
+

HL

EA
(3.3a)

h =
H

ω

√1 +

(
V

H

)2

−

√
1 +

(
V − ωL
H

)2
+

1

EA

(
V L− ωL2

2

)
(3.3b)

The tension at any point in the mooring is:

Te (s) =

√
H2 + (VA + ωs)

2 (3.4)

This model is valid for a hanging cable not in contact with the seabed. A series of checks – instituted using
conditional statements – must be evaluated to determine if the mooring line is in fact not in contact with
the seabed. A mooring line will remain suspended if the net mooring weight in the fluid exceeds zero. The
above equations apply if the following conditions are met:

ω < 0 (3.5a)

or
(V − ωL) > 0 (3.5b)

Naturally, the system of non–linear equations become unsolvable when ρ = ρc, as this leads to a division by
zero since ω = 0. In general, the system of equations become more likely to be ill–conditioned as ρc → ρ [6].

3.1.1 Extending the Analytical Solution to a Cable in Contact with the Seabed
If the vertical force V is less than the total weight of the cable (i.e., V ≤ ωL), then a portion of the mooring
line will rest on the seabed and the conditions in Eqs. (3.5a) and (3.5b) will be violated. The unstretched
length of cable lying on the seabed can be found from [4]:

LB = L− V

ω
(3.6)

where LB is assumed positive. When LB > 0, the formulation to Eqs. (3.1a) and (3.1b) change since we
must now account for 1) seabed friction in the horizontal direction and 2) a decrease in the vertical force
V proportional to the length of cable lying on the seabed. This leads to the following modifications of Eqs.
(3.1a) and (3.1b) [4]:

x (s) =



s for 0 ≤ s ≤
(
LB − H

CBω

)
s+ CBω

2EA

[
s2 − 2s

(
LB − H

CBω

)
+
(
LB − H

CBω

)
λ
]

for
(
LB − H

CBω

)
< s ≤ LB

LB + H
ω ln

[
ω(s−LB)

H +

√
1 +

(
ω(s−LB)

H

)2
]
+ Hs

EA+

CBω
2EA

[
λ
(
LB − H

CBω

)
− L2

B

] for LB < s ≤ L

(3.7a)

z (s) =


0 for 0 ≤ s ≤ LB

H
ω

[√
1 +

(
ω(s−LB)

H

)2

− 1

]
+ ω(s−LB)2

2EA for LB < s ≤ L (3.7b)

where λ is equivalent to:

DRAFT

3.1. ANALYTICAL SOLUTION TO THE SINGLE–LINE CABLE 13

λ =


LB − H

CBω
if

(
LB − H

CBω

)
> 0

0 otherwise
(3.8)

The new term CB is identified as the coefficient of static friction between the seabed and the mooring line.
By substituting s = L into Eqs. (3.7a) and (3.7b), one obtains the vertical and horizontal extension limits
of the mooring line:

l = LB +

(
H

ω

)
ln

V
H

+

√
1 +

(
V

H

)2
+

HL

EA
+
CBω

2EA

[
µ

(
L− V

ω
− H

CBω

)
−
(
L− V

ω

)2
]

(3.9a)

h =
H

ω

√1 +

(
V

H

)2

− 1

+
V 2

2EAω
(3.9b)

where the parameter µ is sought from:

µ =


L− V

ω −
H
CBω

if
(
L− V

ω −
H
CBω

)
> 0

0 otherwise
(3.10)

The line tension as a function of unstretched payout s is given by:

Te (s) =


MAX [H + CBω (s− LB) , 0] for 0 ≤ s ≤ LB√

H2 + [ω (s− LB)]2 for LB < s ≤ L
(3.11)

Table 3.1 gives the rules needed to solve the profile of a single mooring line in two–dimensions.

Figure 3.1: Definition of the entities in a single–line mooring line relative to the local xz axis.

DRAFT

14 CHAPTER 3. MULTI–SEGMENTED, QUASI–STATIC THEORY

Table 3.1: Rules for assembling the single–line mooring model

Evaluated Quantity Suspended Cable Seabed–Supported Cable

Fairlead Force Eqs. (3.3a) and (3.3b) Eqs. (3.9a) and (3.9b)

Line Force Te (s) =
√

H2 +
(
VA + ωs

)2 Te (s) =


MAX

[
H + CBω

(
s − LB

)
, 0

]
for 0 ≤ s ≤ LB√

H2 +
[
ω

(
s − LB

)]2 for LB < s ≤ L

Mooring Profile Eqs. (3.1a) and (3.1b) Eqs. (3.7a) and (3.7b)

Horizontal Anchor Force HA = H HA = MAX
[
H − CBωLB) , 0

]

Vertical Anchor Force VA = V − ωL VA = 0

3.2 The MSQS Theory
The MSQS model is developed as an extension of the single–line theory. Earlier, it was asserted that several
single–lines define a multi–segmented mooring line, Figure 3.2; however, some challenges are imposed by
the single–line theory presented in Section 3.1 preventing a seamless transition into the multi–segmented
domain. Specifically, the single–line solution is given in a two–dimensional domain, where the ith line is
defined in the local xizi plane, Figure 3.1. Ideally, the complete multi–segmented line should be modeled as
a system in a three–dimensional coordinate frame.

To assist development of the multi–segmented theory, we retain the original analytical models from Section
3.1, and perform coordinate transformations on those entities to extend the theory to a three–dimensional
representation. In essence, the process is invoked by transforming the analytical model from the local xizi
frame into a global XY Z coordinate system. The unknowns for each line are solved in the local xizi frame,
and static equilibrium is ensured by solving for line properties that result in zero sum forces on the nodes
in the XY Z frame. This process requires two distinct system of equations to be simultaneously solved
to achieve the static cable configuration. The first set of equation is the force balance equations in three
directions for each node, and the second being the two catenary equations.

Proceeding forward with the MSQS theory development, Figure 3.3 gives the component breakdown of the
multi–segmented line. Each line is defined by a continuous analytical model defined in Section 3.1; therefore,
each line has a local coordinate frame Fi, unique cable properties (Ai, Ei, Li, CBi

and ωi), and boundary
conditions (li, hi, Vi and Hi). In order to create a systematic process to solve the multi–segmented problem,
the first step is to develop a kinematics description of the arrangement given in Figure 3.3. By virtue of the
catenary equations in Section 3.1, each individual line in the mooring is represented by a unique coordinate
frame. The unknown terms in the continuous analytical models (Eqs. 3.3a/3.3b or 3.9a/3.9b) are solved
in the local frame Fi, then transformed to the global F0 frame, where line fairlead and anchor forces are
combined to their respective nodes to check if static equilibrium of the system is attained. Lines do not
connect directly to other lines; instead, nodes act as intermediaries – thus, each line must lie between two
nodes. The position of each node is defined globally in the XY Z frame, from which the local xizi origin can
be defined. Nodes can be classified as having one of three attributes:

1. Fix nodes. These nodes are immovable and act as fixed points in space not necessarily located at the
seabed.

2. Connection nodes. Connection nodes are used to join two or more lines together. These nodes cannot
have fixed or predefined displacements; instead, it is assumed their position is always solved. The total
sum force applied on the node is assumed to be known (these are set to zero unless the user specifies

DRAFT

3.2. THE MSQS THEORY 15

a different value in the input file).

3. Vessel nodes. These node are fixed to a known position in the vessel reference origin, but are free to
move in the global frame. The position of the vessel node in the global frame depends on how the
vessel moves, and this position must be defined by the user.

In the case of Figure 3.2, an example which will be re–examined throughout this document, Node 1 would
be classified as a fix node, Node 2 as a connection node, and Nodes 3 and 4 as vessel nodes. With the
fundamental components of the cable structure defined, the next step is to define the system kinematics.
Once the kinematics are characterized, the process to solve the multi–segmented problem can be outlined.

Figure 3.2: Component breakdown of the multi–segmented line. Each line is required to be associated with no
more than two nodes, but more than one line is permitted to attach to a node, as is the case for Connect node 2.

3.2.1 Multi–Segmented Line Kinematics
A vector breakdown of Figure 3.2 is given in Figure 3.3 to illustrate the kinematic entities that will be
defined. Vector ri denotes the position of frame Fi with respect to the XY Z axis. In the local Fi frame,
vector:

qi(s) = [xi(s) , 0 , zi(s)]
T (3.12)

represents the displacement vector from the origin of Fi to points tangent to the line. When s = L, then
qi(s = L) = [li , 0 , hi]

T , which describes the displacement vector from anchor to fairlead. The components
of xi(s)/zi(s) are determined from Eqs. (3.1a)/(3.1b) or (3.7a)/(3.7b), depending on whether the line is
suspended or in contact with the ground. The orientation of the local frame Fi relative to the global F0

frame is:

ψi = cos−1


(rj − ri) · î√[

(rj − ri) · î
]2

+
[
(rj − ri) · ĵ

]2
 (3.13)

where ψi is indicative of a rotation about the global Z axis, ri is the presumed mooring line anchor point (i.e.,
the origin of Fi), rj is the upper node (fairlead) position, and î = [1 , 0 , 0]

T is a unit vector aligned with
the X axis. As a safeguard against an indeterminate solution, the denominator in Eq. (3.13) is checked to
ensure it is not close to zero, as this would require the mooring line to resemble a narrow ‘U’ in appearance.

DRAFT

16 CHAPTER 3. MULTI–SEGMENTED, QUASI–STATIC THEORY

Note that for all lines, zi is always parallel to Z; so a single rotation about Z is sufficient to describe the line
orientation. The profile for a mooring line can then be obtained in the XY Z frame with:

xi(s) = ri + Riqi(s) (3.14)
where the transformation from frame Fi into F0 is done using the following orthogonal matrix:

Ri =

 cosψi sinψi 0
− sinψi cosψi 0

0 0 1

 (3.15)

After substituting Eqs. (3.15) and (3.12) into Eq. (3.14), the following is obtained:

xi(s) = ri + [xi(s) cosψi , xi(s) sinψi , zi(s)]T (3.16)

Figure 3.3: Notation defining the various vector components in a multi–segmented mooring line.

3.2.2 Iterative Process to Achieve Static Equilibrium
In developing the multi–segmented line solution, a conceptual problem is proposed with an underlying
assumption the mooring line end–points are known; that is, position vectors r1, r3, and r4 are known. This
case study is used as a mechanism to develop the procedure to solve the unknowns to obtain the desired
mooring line profile and fairlead force. The unknowns in this case are, defined in both the global F0 frame
and line Fi frame, are:

• Global unknown: r2. This is the position of the Connect node. By virtue of Eq. (3.12), the displacement
of r2 will have a bearing on the fairlead/anchor forces.

• Local unknown in line 1: H1, V1, HA1 , VA1 , and q1(s = Lu1).

• Local unknown in line 2: H2, V2, HA2 , VA2 , and q2(s = Lu2).

• Local unknown in line 3: H3, V3, HA3 , VA3 , and q3(s = Lu3).

Recognizing the values for HAi
and VAi

can be solved algebraically from Hi and Vi, respectively, in Table
3.1), and qi(s = L) is in fact dependent on r2, i.e.,

qi(s = L) = RT
i (ri+1 − ri) (3.17)

DRAFT

3.2. THE MSQS THEORY 17

then the number of unknowns is reduced to nine terms. In other words, the three values for Hi, the three
values for Vi, and the components of position vector r2. The goal of invoking the iterative solver is to solve
the position of r2 such that forces on node 2 is satisfied by the following force balance equation:

{H1}X + {HA2}X + {HA3}X = 0 (3.18a)

{H1}Y + {HA2}Y + {HA3}Y = 0 (3.18b)

V1 + VA2 + VA3 = Fext (3.18c)

while also satisfying the continuous analysis catenary equations in Table 3.1 for each of the three lines. Fext
in Eq. (3.18c) can be viewed as a contribution from an external source, such as buoyancy module or the
node weight, user input options that will be granted in the MSQS module. In this particular application,
Fext = 0.

In view of the NWTC Programmer’s framework requirements, a framework which supports loose and tight
coupling options, the unknowns for this example can be found in one solve routine when the tight coupling
option in invoked. With tight coupling, the responsible party for finding the solution is the program calling
the MSQS module in MAP. Tight coupling encourages greater modeling fidelity and accessibility to lin-
earization, a process not available with loose coupling. Under the auspice of loose coupling, the non–linear
equations are solved in MAP, and once convergence is achieved, the Vessel fairlead forces are returned to
the calling program. MAP uses a coupled multi–physics approach to the solve the problem (Fig. 3.4), which
is different from the nested (monolothic) algorithm proposed in Peyrot, et al. [10].

DRAFT

18 CHAPTER 3. MULTI–SEGMENTED, QUASI–STATIC THEORY

..Start

. Set mooring line
initial guess and properties

. for i = 1 to number of lines

. evaluate Eqs. 3.3a∼3.3b
or Eqs. 3.9a∼3.9b

. for i = 1 to number of nodes

. evaluate Eqs. 3.18a∼3.18c

. Update H, V , X, Y , Z

.Convergence
achieved?

.End

.yes

.no

Figure 3.4: Flow chart to solve the multi–segmented, quasi–static problem. The inner loop iteration is applied
for each line to solve the appropriate properties/boundary conditions.

DRAFT
Chapter 4

Input File Commands

Using the Python file circulated with the current MAP distribution, MAP can be executed by placing the
MAP.pyd (or MAP.so for OS X and linux users) python module in the same folder as the python script, then
typing:

$ python MAP start.py example input.map

at the command line. The python script in the case is MAP start.py. Of course, executing MAP from the
terminal is optional, and other shells can be used to run the Python script, such as IPython1 or spyderlib2,
which provides a MATLAB–like environment. MAP requires the python–dev3 distribution to function on
linux operating systems.

For FAST users, the MAP win32.dll should be placed in the same directory as the FAST executable. Calling
to the DLL is performed automatically.

4.1 MAP Input File Parameters
A MAP input file is needed to initialize the model and to provide essential information regarding the mooring
line properties, declaring the number of nodes and lines in the system, associations between nodes and lines,
assignment of boundary conditions to nodes, and to provide initial guesses for the model. The sample MAP
input deck given in Table 4.1 acts as a template defining all parameters necessary to define a model. It is
recommended to use a <*.map> extension to identify the MAP input file.

There are four sections to the MAP input file as shown in Table 4.1:

1. LINE DICTIONARY: This section defines the line properties, such as the cross–section area, elastic
properties and its density. A user has the option to give any name to the line type at their discretion.
Line types can also be defined, but not used.

2. NODE PROPERTIES: Nodes define the line fairlead and anchor positions in the three–dimensional coordi-
nate frame. The application point of the fairlead and anchor forces takes place at the nodes. External
force, such as buoyancy, a weight or thrust forces, can be applied to the node.

3. LINE PROPERTIES: Each line has characteristics defined in the LINE DICTIONARY section. This gives
the flexibility to select unique lengths for each line. Integer values are used to link the corresponding
nodes acting as fairlead and anchor points. Each line requires two nodes to define its orientation in
the three–dimensional space.

1http://ipython.org/
2http://code.google.com/p/spyderlib/
3http://packages.ubuntu.com/search?keywords=python-dev

19

http://ipython.org/
http://code.google.com/p/spyderlib/
http://packages.ubuntu.com/search?keywords=python-dev

DRAFT

20 CHAPTER 4. INPUT FILE COMMANDS

4. SOLVER OPTIONS: The PETSc numerical library has an extensive list of options available to solve
non–linear systems. Rather than setting these option at compile–time, the user has the ability to set
tolerances, solver strategies and matrix preconditioners at run–time. We suggest using the default
properties in the example problems first, then tuning the option until the model converges. Readers
can use the sample MAP input file template as a reference point on which options to start with.

Values prefixed by ‘#’ are used to identify the constraint variables, i.e., values being solved iteratively by
the numerical solver. Not all numerical inputs in the MAP input file can be iterated, and the particular
solvable entries are limited to those contained in the NODE PROPERTIES. Note the fluid density, gravitational
constant, and water depth are intentionally not defined in the input file to avoid conflicts between MAP
and the calling program; instead, they are passed as inputs to MAP by the calling program in the model
initialization phase.

The input properties define in the MAP input deck are as follows:

LineType
Defines a library of lines available to the user when setting the line properties in the input file. The
name given for the LineType can be up to the user’s discretion. This parameter is defined twice in
the MAP input file: first in the LINE DICTIONARY section, where the user has the opportunity to label
any way they wish. LineType is listed a second time in the LINE PROPERTIES portion of the MAP
input file, where the user must specify one line type named in the LINE DICTIONARY section.

Diam
Mooring line diameter. Units are specified in m.

MassDenInAir
Line density in air. Units are specified in kg/m.

EA
Line stiffness. Units are specified in kN.

CB
Mooring line static friction coefficient.

Type
As stated in Section 3.2, each node can assume the properties of a Fix, Connect, or Vessel node. Each
node has unique characteristics that must be understood when constructing a model, which will be
explored later in this document. The only permissible Type are the three listed.

X, Y, Z
The node displacement in the global frame are labeled as the X, Y and Z Cartesian coordinates,
which has its origin at the intersection of the undeflected tower centerline and the mean sea level. The
displacements and forces applied to Vessel nodes are presumed to be expressed in the local frame of
the vessel. The displacement units are specified in m units.

M
Mass of the node in air with units specified in kg. The node weight is accounted for when solving the
node equations, Eq. (3.18c), which amounts to M×g in the vertical direction.

DRAFT

4.2. MAP INPUT FILE RUN–TIME FLAGS 21

B
Displaced volume of the node with units specified in m3. This is needed to produce a net buoyancy on
the node, given by B×g×ρ , where ρ is density of the fluid. This force is summed in Eq. (3.18c).

FX, FY, FZ
An external force applied to the node in the X, Y and Z global coordinates. This could be described
as a forward thrust or fluid drag due to a current. Units are specified in kN.

UnstrLen
Unstretched line length. Units are specified in m.

NodeAnch
References the node acting as the line starting (anchor) point (i.e., the origin of the xizi frame).

NodeFair
References the node acting at the line end (fairlead) point.

Flags
Line options. This topic is covered in Section 4.2.

---------------------- LINE DICTIONARY ---
LineType Diam MassDenInAir EA CB
(-) (m) (kg/m) (kN) (-)
steel 0.25 343.6 9.817E6 1.0
nylon 0.30 98.6 9.896E5 1.0
---------------------- NODE PROPERTIES ---
Node Type X Y Z M V FX FY FZ
(-) (-) (m) (m) (m) (kg) (mˆ3) (kN) (kN) (kN)
1 Fix 400 0 -350 0 0 # # #
2 Connect #90 #0 #-80 0 0 0 0 0
3 Vessel 20 30 -10 0 0 # # #
4 Vessel 20 -30 -10 0 0 # # #
---------------------- LINE PROPERTIES ---
Line LineType UnstrLen NodeAnch NodeFair Flags
(-) (-) (m) (-) (-) (-)
1 steel 520 1 2 plot x pos
2 nylon 90 2 3 plot z force
3 nylon 90 2 4 plot z force
---------------------- SOLVER OPTIONS---
(-)
-msqs defalt tr
-msqs fd jacobian color

Table 4.1: Input deck for the MSQS program. This parameters specified in this deck is consistent with the
mooring profile illustrated in Figure 2.1(b).

4.2 MAP Input File Run–Time Flags
The MAP run–time flags are intended to give the MSQS module flexibility to be used as a means to specify
the iterated variables in the problem and to select the output options for the program. Depending on how
the run–time options are specified, MAP can be used as an analysis tool or a simulation program.

(Pound Symbol)
Some variables are preceded by a symbol ‘#’; this symbol is used to identify the corresponding nu-
merical value as an iterated variable being solved for, where the subsequent numeric string is the
user–supplied initial guess.

DRAFT

22 CHAPTER 4. INPUT FILE COMMANDS

4.2.1 Line Flags
LAY LENGTH

The LAY LENGTH run–time flag outputs the length of the portion of cable resting on the seabed to the
MAP output file. The portion of cable laying on the seabed is equivalent to LB .

LINE TENSION
The line tension along the line is written to the map output file using Eq. (3.4) or Eq. (3.11),
whichever is applicable. The output format is:

T[i](s1) T[i](s2) T[i](s3) T[i](s4) T[i](s5) T[i](s6) T[i](s7) T[1](s8) T[i](s9) T[i](s10)

In the above template, s1 = s = 0 and s10 = s = L, The in–between values si are tensions for points
evenly spaced between s = 0 and s = L.

PLOT
PLOT enables the plotting functionality of the MAP program. The PLOT utility is beneficial in that it
allows the user to view the equilibrium profile of the mooring line that has this feature enabled. This
flag only plots the lines which are marked with this option. Plotting can only be performed when the
plot() function is called explicitly in Python as defined in Section 5.3. An example output produced
by the PLOT flag is given in Figure 4.1. As MAP is still in an experimental phase, it is recommended to
use the PLOT feature in the MAP input file. To enable this feature, the Matplotlib Python extension
module must be installed.

X Displacement [m]

50 100 150 200 250 300 350 400 Y Disp
lacement [m

]

30
20

10
0

10
20

30

De
pt

h
Be

lo
w

 M
SL

 [m
]

350

300

250

200

150

100

50

Figure 4.1: Mooring line profile for a cable generated using the specifications listed in Table 4.1.

OMIT CONTACT
For some cases, it is helpful to perform a static analysis with the cable/sea bed feature disabled. This
reduces the set of catenary equations solved to Eqs. (3.3a) and (3.3b), which are better conditioned
and increases the probability of finding a solution. A key feature of the OMIT CONTACT flag is it allows
one to find the solution of freely–hanging cable, which can in turn be used as the initial guess for
the cable resting on the sea bed. This is useful in cases where the cable–seabed problem becomes

DRAFT

4.2. MAP INPUT FILE RUN–TIME FLAGS 23

ill–conditioned. As an example, the profile solve in Figure 4.1 duplicated in Figure 4.2, this time with
the OMIT CONTACT flag enables in the MAP input file (Table 4.1.).

X Displacement [m]

50 100 150 200 250 300 350 400 Y Disp
lacement [m

]

30
20

10
0

10
20

30

De
pt

h
Be

lo
w

 M
SL

 [m
]

350

300

250

200

150

100

50

Figure 4.2: Mooring line profile for a cable generated using the specifications listed in Table 4.1. The
OMIT CONTACT flag is raised for line 1 to produce this result.

X POS, Y POS, Z POS
The option to output the XYZ fairlead node position with respect to the global axis is raised with the
X POS, Y POS, and Z POS flag. Output is provided only for those lines raising this flag.

X FORCE, Y FORCE, Z FORCE
Similar to fairlead node position flag, the force at the fairlead node can be printed to the MAP output
file using the i FORCE flag. These are the fairlead reaction forces.

FAIR TENSION
This flag prints the tension at the line fairlead to the MAP output file.

ANCH TENSION
The tension at the base of the line is also available to the MAP output file by raising this flag in the
MAP input file.

REPEAT <angle 1> <angle 2> ... <angle n>
The repeat flag is for systems using a line multiple times. This flag takes the inputs above it, and
rotates it about the Z axis by the angle provided by the user. Repeat is not recursive, in that it will
not repeat the repeated sections. Example usage is given in Table 4.2. This modification of the MAP
input file results in

DRAFT

24 CHAPTER 4. INPUT FILE COMMANDS

Line LineType UnstrLen NodeAnch NodeFair Flags
(-) (-) (m) (-) (-) (-)
1 steel 520 1 2 plot x pos
2 nylon 90 2 3 plot z force
3 nylon 90 2 4 plot z force
4 repeat 120 240

Table 4.2: An alternative method to define line systems that are repeated multiple times. This format is based
on the input deck in Table 4.1.

X Displacement [m]

200
100

0
100

200
300

400 Y Disp
lacement [m

]

300
200

100
0

100
200

300

De
pt

h
Be

lo
w

 M
SL

 [m
]

350

300

250

200

150

100

50

Figure 4.3: Mooring line profile for a cable generated using the specifications listed in Table 4.2.

4.3 MAP Output File Format
When the MSQS is initialized, MAP will produce a summary file, named summary.map, regardless of the flags
raised in the MAP input file. The summary.map text file is intended to be used for providing information
regarding the model setup, including the cable types, their properties, line connectivity information, line
forces, and the original input file contents. This file provides informational details about the model geometry
and line tensions at static equilibrium. The summary.map text file has the format demonstrated in Table 4.4.
Variables inside parenthesis denote ones that are solved. Each variable prefixed by a ‘#’ in the MAP input
file is between parenthesis in the summary.map file.

The lines in the summary.out file, for example, for line 1:

X Position [m] : | -400.0 -> (-39.3)

Y Position [m] : | 0.0 -> (0.0)

Z Position [m] : | -350.0 -> (-90.1)

corresponds to the line anchor and fairlead position relative to the global reference frame. Since the fairlead
of line 1 connects to the anchor of line 2 and 3, there should be commonality between all lines. For the vessel
nodes, the horizontal force H is equal to the magnitude force in the X and Y directions, i.e.,

H =
√
FX2 + FY2

DRAFT

4.4. MAP INPUT FILE RULES 25

A second file, the map.out file, provides a mechanism to supply the node and line information for time–stepping
simulations. Only data corresponding to raised option flags will be printed to the map.out file. The map.out
file is appended with information regarding the status of the time simulation. The node/line number (corre-
sponding to the value used in the MAP input file) is label within the ‘[]’ brackets, Table 4.3. For example,
X[1] relates the node 1 displacement in the X direction, and V[3] is the vertical fairlead force in line 3.
This file is not produced when MAP is coupled to FAST, as all the output are printed to the FAST output
file. MAP is always called according to the glue code time step needs.

MAP Output File.
Outputs were generated using MAP 0.87.06a-mdm on <2013-09-25.11:35:5>

Time X[1] V[2] V[3]
[s] [m] [kN] [kN]
0 39.319 493.237 493.237

MAP successfully terminated

Table 4.3: Example MAP output file output for the inputs give in Table 4.1.

4.4 MAP Input File Rules
The MAP rules are in place to prevent indeterminate equations and to avert non–physical problems. Steps
are taken inside the MAP source code to return error codes and messages should such an event occurs;
however, MAP is still regarded as an experimental code, and the error checking mechanisms are continuously
undergoing changes. Error messages are returned if any condition in Section 4.4.1 are violated.

4.4.1 Node Rules
1. For Vessel nodes, the ‘#’ run–time flag must be selected for the three force variables.

As mentioned earlier, this prevents the number of unknowns to exceed the number of equation.
This restriction echoes the number of equations used Eqs. (3.18a)∼(3.18c). At the discretion of
users, a number can follow the ‘#’ symbol. The numeric value specified is used by MAP as the
initial guess for the force. If a numeric value is not specified, then MAP will decide on an initial
guess.

2. Connect nodes must have their ‘X’, ‘Y’, and ‘Z’ directional variables prefixed with ‘#’.
The ‘M’, ‘B’, ‘FX’, ‘FY’, and ‘FZ’ variables must be fixed. This requirement exists because the
sum–forces on each connection point between multiple lines must be zero. By design, the sum
force equations are always iterated for a Connect node.

3. For Fix nodes, their ‘FX’, ‘FY’, and ‘FZ’ directional variables prefixed with ‘#’.
The ‘FX’, ‘FY’, and ‘FZ’ force variables amount to the base forces at the line anchor in the global
XYZ coordinate frame.

DRAFT

26 CHAPTER 4. INPUT FILE COMMANDS

MAP Summary File.
Outputs were generated using MAP version 0.87.06a-mdm on <2013-09-25.13:38:41>

Sea Density [kg/m2]: 1020.000
Gravity [m/s2] : 9.810
Depth [m] : -350.00

Cable Type : steel
Diam [m] : 0.250
MassDenInAir [kg/m] : 343.600
EA [kN] : 9817000.000
CB : 1.000

Cable Type : nylon
Diam [m] : 0.300
MassDenInAir [kg/m] : 98.600
EA [kN] : 989600.000
CB : 1.000

Node 1 Data: Node 2 Data: Node 3 Data: Node 4 Data:

Node Type: | Fix Connect Vessel Vessel
X [m] : | 400.000 (39.315) 20.000 20.000
Y [m] : | 0.000 (0.000) 30.000 -30.000
Z [m] : | -350.000 (-92.676) -10.000 -10.000
M [kg] : | 0.000 0.000 0.000 0.000
B [m3] : | 0.000 0.000 0.000 0.000
FX [kN] : | (0.000) 0.000 (-112.426) (-112.426)
FY [kN] : | (0.000) 0.000 (174.624) (-174.624)
FZ [kN] : | (0.000) 0.000 (493.018) (493.018)

Line 1 properties:

Line type : | steel
X Position [m] : | 400.0 -> (39.3)
Y Position [m] : | 0.0 -> (0.0)
Z Position [m] : | -350.0 -> (-92.7)
Length [m] : | 520.0
H [kN]: | (224.9)
V [kN]: | (939.2)

Line 2 properties:

Line type : | nylon
X Position [m] : | (39.3) -> 20.0
Y Position [m] : | (0.0) -> 30.0
Z Position [m] : | (-92.7) -> -10.0
Length [m] : | 90.0
H [kN]: | (207.7)
V [kN]: | (493.0)

Line 3 properties:

Line type : | nylon
X Position [m] : | (39.3) -> 20.0
Y Position [m] : | (0.0) -> -30.0
Z Position [m] : | (-92.7) -> -10.0
Length [m] : | 90.0
H [kN]: | (207.7)
V [kN]: | (493.0)

----------------------- MAP INPUT FILE CONTENTS AT INITIALIZATION ---------------------
steel 0.25 343.6 9.817E6 1.0
nylon 0.30 98.6 9.896E5 1.0
1 Fix 400 0 -350 0 0 # # #
2 Connect #90 #0 #-80 0 0 0 0 0
3 Vessel 20 30 -10 0 0 # # #
4 Vessel 20 -30 -10 0 0 # # #
1 steel 520 1 2 plot x pos
2 nylon 90 2 3 plot z force
3 nylon 90 2 4 plot z force
-msqs fd jacobian color
-msqs default tr
----------------------- END INPUT FILE CONTENTS ---------------------------------------

Table 4.4: Example MAP summary.map file output for the inputs give in Table 4.1. All numeric value inside the
‘()’ indicates the variable is iterated (solved) in MAP, which are prefixed by a ‘#’ in the MAP input file. The
summary file provides the model data a static equilibrium. This output file corresponds to the image in Figure
4.2.

DRAFT

4.4. MAP INPUT FILE RULES 27

4.4.2 Line Rules
Line define connections between nodes. As such, an anchor node and fairlead node is needed to be defined
for each line. The anchor node number corresponds to the item identified in the in the node section of the
MAP input file. If the node number does no exist, then an error message will be returned at initialization.
The flags defined for each line can include any option defined in section 4.2.

4.4.3 Solver Options
MAP purposely leaves a large degree of flexibility for the solver options because the numerical routines are
still under development. To reduce burden on users, shorthand run–time commands have been implemented
into MAP. The basic input option:

-msqs default ls

uses is shorthand for these commands:

-ksp type preonly
-pc type lu
-pc factor nonzeros along diagonal
-snes type newtonls

which uses a line search nonlinear solver to find the roots and a direct solver for the linear equation. If the
linear search solver fails, then an alternative would be the trust region method. This can be use by calling:

-msqs default tr

in the MAP input file. This option simply replaces -snes type newtonls with -snes type newtontr.

For stubborn, pathological problems, advanced solver options may have to be employed. This is a known
issue systems that deploy taut line moorings in the design, such as a TLP. One such system offering and
example on how to resolve this issue is the MAP input file for the TLP certification test. This test is
distributed with FAST, but the solver options used in the TLP example are:

--msqs fd jacobian color
-snes type newtontr
-ksp type preonly
-pc type lu
-pc factor nonzeros along diagonal
-snes atol 1e-6
-snes rtol 1e-6
-snes stol 1e-6

the noted difference between these options and the ones used above are the solver tolerances and the algorithm
used for matrix reordering. The option -snes atol is the absolute error of the residual relative norm, and
-snes rtol is the relative error of the relative norm. The option -snes stol defines the step size of the
iteration; convergence is reached if the step size is less than this value.

DRAFT

28 CHAPTER 4. INPUT FILE COMMANDS

DRAFT
Chapter 5

Source Code Structure

This chapter provides a description of the class hierarchy structure, the program entry points, and the
responsibilities of MAP classes and function calls. This chapter will cover the underlying code structure. For
implementation details beyond the general scope of what this chapter aims to provide, users are encouraged
to explore the source code itself. For those planning to modify the source code, we recommend becoming
familiar with the program framework as reviewed in Jonkman,et al, [3]. Others may find the text by Oliveira
and Stewart [8] helpful, which provides guidelines on writing scientific software.

MAP is intended to be a library called by other dynamic analysis tools. Although the source code is written
in C++, the program driving MAP can be written in languages other than C/C++. By design, MAP is
compiled with Python wrappers as a default mechanism to link it with other codes; or alternatively, for
stand–alone operations. By linking MAP with an interpreted language such as Python, this affords the
ability to dynamically interact with MAP. The Pythonic features of MAP are examined in Chapter 6, and
users may skip this chapter and proceed to the next without loss of continuity. MAP, however, can also
be linked with other codes at compile time, such as those written in Fortran, Pascal, C or C++. MAP is
designed with data structures and functions to define clear entry points for other driver programs. This
chapter explains how MAP functions and classes interact with the driving program. The program structure
is designed to support both loose and tight coupling, and to support two coupling schemes, MAP is designed
with varying level of abstraction so that only pertinent information is exposed to the driving program. At
the time of this writing, only loose coupling is supported in MAP; however, the framework can be expanded
to allow tight coupling.

5.1 MAP Classes
MAP classes are the essential building blocks one needs to define and update nodes and lines. Though
users do not have direct access to the Node and Element1 data structures in the program interface, their
attributes are modified directly from the function arguments list submitted by the driving program. Thus,
function arguments act as surrogates to modify variables located elsewhere in the MAP program. Function
arguments can appear in several forms, more notably as model inputs, output, and constants; and through
these mechanisms, the model can be updated and information extracted. Aside to providing an avenue to
modify MAP variables, the classes are also used to preserve state information, which is especially important
for binding MAP to languages not fully supporting C++ objected–oriented features. The primary MAP
classes written into the program are as follows:

u(t) – Input States
The inputs define changes to the model boundary conditions. This can be acted upon by a vessel
displacement, which in turn will influence the fairlead displacement in a three–dimensional coordi-

1In the source code, a ‘line’ defined in the MAP input file is instantiated as an Element object in the source code.

29

DRAFT

30 CHAPTER 5. SOURCE CODE STRUCTURE

nate frame. Bear in mind the fairlead displacement is a function of both the vessel translational
displacement as well as the rotational displacement about the vessel origin, i.e.,:

ui = r + Rri
where ui is the input for the ith fairlead, r is the vessel displacement, R is the orthogonal transforma-
tion from local to global reference frames, and ri is the fairlead attachment point in the vessel local
frame.

z(t) – Constraint States
The constraint states are variables solved (i.e., iterated) at each time step. One such example would
be the X, Y, and Z position of a Connect node. In general, the constraint states are identified by
variables prefixed with a ‘#’ in the MAP input file.

y(t) – Output States
The outputs are values sought when solving the non–linear system of equations. The system outputs
are not necessarily limited to constraint state variables, but may also include other entries, such as

Table 5.1: Description of the MAP classes needed for loose coupling. Classes identified in blue are needed for
tight coupling in the FAST framework. The tight coupling functionality will be added in subsequent releases of
MAP.

MAP Class NWTC Equivalent Identified As

MAP ConstraintStateType ModName ConstraintStateType The array z(t)

MAP OutputType ModName OutputType y(t)

MAP OtherStateType ModName OtherStateType d(t)

MAP ParameterType ModName ParameterType p(t)

MAP InputType ModName InputType u(t)

MAP InitInputType ModName InitInputType Initialization type

MAP ErrStat INTEGER(IntKi) Error code

MAP Message CHARACTER(*) Error message (string)

MAP dXdu ModName PartialContStatePInputType ∂X
∂u(t)

MAP dXddu ModName PartialDiscStatePInputType ∂Xd
∂u(t)

MAP dYdu ModName PartialOutputPInputType ∂Y
∂u(t)

MAP dZdu ModName PartialConstrStatePInputType ∂Z
∂u(t)

MAP dXdz ModName PartialContStatePConstrStateType ∂X
∂z

MAP dXddz ModName PartialDiscStatePConstrStateType ∂Xd
∂z

MAP dYdz ModName PartialOutputConstrStateType ∂Y
∂z

MAP dZdz ModName PartialConstrStatePConstrStateType ∂Z
∂z

ObjectCopy – Copy any type/structure

MAP Save SaveAry Array

Time REAL(DbKi) Current time

dT REAL(DbKi) Evaluation interval

DRAFT

5.2. MAP TAXONOMY 31

the length of cable laying on the seabed (LB) or the tension along the mooring line, Eq. (3.4) – items
not traditionally needed to advance the dynamics simulation forward in time.

p(t) – System Parameters
These are the time–invariant properties of the mooring line, such as the cross–sectional area and
material density. Parameters should only be set once: at initialization.

d(t) – Other States (the binding object)
The other states object is used as a container class to store model attributes, properties and local
variables not exposed to the driving program. More importantly, this class helps avoid re–initialization
of the node/line (Element) connectivity matrix each instance a function call is made. In essence, the
other states object could be thought of as a function of the primary data types: d (p(t),u(t), z(t),y(t)).

In addition to the above mentioned classes, the following functions are defined in accordance with the NWTC
framework. Though these functions are not directly exposed to the driving program, their results are:

Z(t) – Constraint Equations
The goal of the non–linear solver is to find a set of z(t) such that Z(u(t), z(t), t) = 0. In the MSQS
module, the constraint equations are a combination of the Newton static equilibrium equations, Eqs.
3.18a∼3.18c, and the catenary equations listed in Table 3.1.

Y(t) – Output Equations
The output represent the entities being solved in MAP, which is setup to be the fairlead forces that are
attached to the vessel in the current setup. The output equations are of the form y = Y(u(t), z(t), t).

As indicated above, the MAP OtherStateType is used as a container to store model information, numerical
solver options, the node/element connectivity matrix, and to bypass re–initializing data structures each time
step. The MAP OtherStateType object contains all information about MSQS model, including the:

• Cable library data.

• Node information.

• Element information, including references to the fairlead and anchor nodes it attaches to.

• Local variables, or variables not exposed to the calling program.

• Information regarding the solver tolerances, options, and matrix reordering.

5.2 MAP Taxonomy
Because MAP unknowns are determined at run–time, the program does not enforce tight requirements
governing the definitions of an input state, model parameter, constraint, or output variable. This avoids
overbearing assumptions about the model that may restrict the scope of problems which can be solved. One
MAP object serves as a ‘memory bank’ for all model information. The remaining objects point to various
bits of information in the ‘memory bank’, and selectively chooses packets of data based on its relation to the
model as a whole.

The object serving as the ‘memory bank’ is the MAP OtherStateType class, Figure 5.1. Other classes point to
various memory parcels in MAP OtherStateType depending on how it interacts with the model. In principle,
the MAP OtherStateType object is updated the instant changes are made to u(t), z(t), y(t), or p(t). The
caveat to sharing variables between classes is that memory management becomes a growing concern. Much

DRAFT

32 CHAPTER 5. SOURCE CODE STRUCTURE

of this burden is resolved by using shared pointers, Listing 1. These objects are automatically destroyed
when the program completes. Nodes, lines, and cable properties, the essential building blocks to create a
mooring system, are declared as shared pointers, because any variable in one of these components could be
shared across multiple classes. This notion will be dealt with in greater detail in Sections 5.2.2.2 and 5.2.2.1.

The rational for designing MAP’s architecture in this manner is as follows: once variables are updated in
u(t) (the inputs), this modifies the system of equations we are seeking to minimize in MAP OtherStateType.
The statics solution can then be solved for the updated mooring line configuration. Once solved, the
newly determined outputs are automatically updated in MAP OutputType (because the output class will
reference the relevant variables in MAP OtherStateType). With this design, multiple instances of the
MAP ConstraintStateType object can be created, allowing several MSQS mooring lines to be modeled
simultaneously.

For modules adhering to the NWTC framework, it must be vigilant to ensure a variable does not simul-
taneously act as a parameter type, constraint state type, or input type. To not violate this requirement,
MAP checks to enforce that MAP OtherStateType variables are referenced by, at most, one MAP InputType,
MAP ParameterType, or MAP ConstraintStateType class. As shown in Figure 5.1, the MAP InputType,
MAP ParameterType and MAP ConstraintStateType, classes do not share common variables. However, the
MAP OutputTypeclass is free to reference variables previously associated with the MAP ConstraintStateType,
MAP InputType, or a MAP ParameterType classes. The output class has no bearing on the solution process,
and it merely serves as an instrument to deliver results to the calling program. In this regard, a variable
associated with MAP OutputType can coincide with other NWTC classes. MAP OutputType can also point to
unique variables not considered essential for the solution process. An example would be the tension along
the mooring line, as directed by Eq. (3.4).

5.2.1 Subordinate MAP Objects
The Node and Element classes are designated ‘subordinate classes’ because they are not required by the
NWTC framework, are not exposed to the driver program, but are essential to carry calculations forward.
These objects are defined within the MAP OtherStateType object, Listing 1. Breaking the MSQS problem
into lower layers of abstraction supports principles related data encapsulation, restricted access to variables,
and decomposing the problem into the fundamental equations we are solving: 1) the force balance equations
in Eqs. (3.18a)∼(3.18b) and 2) the catenary equations in Eqs. (3.3a)∼(3.3b) or (3.9a)∼(3.9b), depending
on which is appropriate.

Variables are distinguished apart as fixed versus iterated based on the assignment of the boolean variable
in the VarType variable, Listing 2. This structure is used to identify Node and Element run–time constants
from time–varying values. Variables are assigned to be ‘fixed’ by setting the is fixed Boolean to true,
where value is the numerical value of the variable (regardless if it is iterated or fixed). The name string
attribute is used to give the VarType a handle, where the index node/element number. The ‘#’ declaration
in the MAP input file is what drive the assignment of is fixed.

5.2.2 The Dichotomy Between Nodes and Elements
There is mutual association between elements and nodes. The Element class contains model structural
properties, while Node is a reflection of forces acting on the system. A partnership exists between the
two objects, where a change in node displacement will influence an element’s fairlead tension. Updating
one variable in either class may require other non–fixed variables to be re–computed, because some local
variables in associated classes may time out. This exemplifies the role of MAP OtherStateType as a container
class, and all model properties can be brought up–to–date by cycling through element functions within
MAP OtherStateType. Because Node and Element objects share common variables, this helps ensure a
fairlead force calculation is based on current node displacements, and vise–versa.

DRAFT

5.2. MAP TAXONOMY 33

Figure 5.1: In MAP, the MAP OtherStateType is used as a central hub to store the physical memory of all data
pertaining to the model. The remaining NWTC classes point to individual data packets in MAP OtherStateType.
This avoids explicitly calling functions for the specific task of updating the model boundary conditions, thus reduc-
ing function call overhead. For instance, when u(t) is modified, the change takes effect in MAP OtherStateType
automatically.

5.2.2.1 The Node Class

All variables identified in the NODE PROPERTIES portion of the input file take refuge in this class, including
variables prefixed by a ‘#’ symbol (by default, all variables declared as a VarType), Listing 3. At initialization,
when a node is dynamically allocated, the VarType options are set to a default value, then shortly thereafter
re–assigned values based on the input file commands. After initialization, Node checks are made to see if
conflicts arise in the MAP input file. The most elementary conditions are outlined in Section 4.4. If an
exception is raised, an error code will be returned to the calling program.

Because FX, FY, and FZ Vessel node variables can arbitrarily raise a ‘#’ flag, a Boolean flag is used as an
identifier to signal if Newton’s static equilibrium equation is solved for the ith direction, Eqs. (3.18a)∼(3.18b).
For instance, if solve X Newton equation is true, then the numeric solver function will know to call function
object SUM F IN X f x. The function object f x() is similar to a function pointer, except in that it preserves
state information about the present node. In this case, the state information is a reference to the current
node, thereby bypassing the need for an arguments list. When f x() is called, the value returned is (Listing
3):

f x() ← (sum FX)-(FX.value) (5.1)

where sum FX is the combined force in all element fairleads/anchors attaching to the node. A similar trend
transpires for Y and Z direction, except that in the Z direction, the node weight (through M) and buoyancy
(through B) must be factored into the force balance equation. The sum forces on the node, sum FX, are
incremented up (or down) using the addToSumFX(...) member function, where the value within the

DRAFT

34 CHAPTER 5. SOURCE CODE STRUCTURE

1 class MAP_OtherStateType_class{
2 private:
3 /**
4 * Create instance of:
5 * 1) the cable line dictionary as written in the MAP input file
6 * 2) the node properties as written in the MAP input file
7 * 3) the line properties as written in the MAP input file
8 * @note : this is the only place in the MAP program where the cable
9 * properties (for nodes, element, and cable parameters) are
10 * defined. Every other instance of a node, element or
11 * properties is a pointer to a variable in this class.
12 */
13 std::vector <CableLibrary_ptr> property; // implement: shared_ptr <CableLibrary>
14 std::vector <Node_ptr> node; // implement: shared_ptr <Node>
15 std::vector <Element_ptr> element; // implement: shared_ptr <Element>. This is a line!
16 public: /* . . . */
17 }

LisƟng 1: AƩributes of the MAP OtherStateType class inMAP. The line (also Element and node connecƟvity matrix
and operaƟonal tools are stored inside this class.

parenthesis is the real number to increment sum FX by. This gives the ability to pass element fairlead and
anchor forces to nodes simply by referencing a Node object within the Element class. A secondary discussion
reinforcing Node and Element dynamics is followed–up on in the next section.

5.2.2.2 The Element Class

While the Node class is responsible for storing node variables, the Element class is accountable for updating
the forces applied to Node(s). Ultimately, the node force is dependent on line tensions. Associations are made
between the fairlead and anchor nodes to an element by referencing two Node objects in each Element, Listing
4. This allows each element to extract the mooring line horizontal and vertical excursion based on current
node data. Two Node pointers are declared, *fairlead and *anchor, whose purposes are obvious. This
exposes Node member functions (but not attributes, because they are declared as private) to the Element
class. In turn, the variables l and h can be extracted and the element line forces can be summed into their
respective nodes. Algorithm 1 demonstrates the pseudo code to update the node forces from within the
Element::UpdateElement() member function in Element.cpp source file. Once the fairlead and anchor
forces are converted to the global reference frame, they are added to the node force, lines 19 and 22 in
Algorithm 1, respectively.

Similar to Node, the Element class utilizes VarType variables to distinguish iterated parameters apart from
fixed values. Although H and V are not set directly in the MAP input file, their Boolean flags and numeric
values are implicitly derived depending on a) the node type and b) the combination in how FX, FY, and FZ are
specified in the MAP input file. Readers are referred to Section 4.4 regarding horizontal and vertical fairlead
force variable initialization rules. The line properties, which includes the cross–sectional area, density and
friction coefficient, are also raw pointers, declared justly as *line property. If changes are made to the
cable library at run–time, then modification will propagate to all elements referencing relevant line type.
This is useful for instances where MAP is used as an optimization design tool. The run–time options for the
current element are set with the Boolean flags from lines 17 to 26 in Listing 4, whose meaning are explained
in Section 4.2. These flags are used to enable specific MAP program features.

DRAFT

5.2. MAP TAXONOMY 35

1 struct VarType{
2 public:
3 bool is_fixed; // If is_fixed = false, then solve this var
4 double value; // Current floating-point value
5 std::string name; // Description of variable (to identify it by name)
6 int reference_counter; // Ensure association to one NWTC type
7 int index; // index = node or element number
8 }

LisƟng 2: AƩributes of the VarType class in MAP. This class is used to idenƟfy the variable name, the node to which it
is connected to, if it is iterated by the numerical solver, and the current value. AddiƟonal class aƩributes and methods
can be found in CableFactory.cpp source file.

1 class Node {
2 private:
3 /**
4 * Node variables that can be iterated.
5 * @note : all other variables given in the catenary equation not listed
6 * here are 'local' variables not exposed to the glue code.
7 */
8 VarType X , Y , Z; // node displacement in X, Y, Z global coordinates [m]
9 VarType M; // node point mass [kg]
10 VarType B; // node displaced volume [m^3]
11 VarType FX , FY , FX; // node applied force in X, Y, Z global coordinates [N]
12

13 /**
14 * Informs the program if the X, Y or Z direction Newton equilibrium equation
15 * is solved for this node
16 */
17 bool solve_X_Newton_equation;
18 bool solve_Y_Newton_equation;
19 bool solve_Z_Newton_equation;
20

21 /**
22 * Node sum force applied by elements, ext. forces and mass/buoyancy modules
23 */
24 double sum_FX;
25 double sum_FY;
26 double sum_FZ;
27

28 public:
29 SUM_F_IN_X f_x; // f_x is the sum-force equations in X.
30 SUM_F_IN_Y f_y; // `` ''
31 SUM_F_IN_Z f_z; // `` ''
32 }

LisƟng 3: AƩributes of the Node class in MAP. AddiƟonal class aƩributes and methods can be found in CableFac-
tory.cpp source file.

DRAFT

36 CHAPTER 5. SOURCE CODE STRUCTURE

1 class Element {
2 private:
3 CableLibrary *line_property; // line properties
4

5 /**
6 * Reference to the anchor and fairlead node,
7 * respectively.
8 */
9 Node *anchor;
10 Node *fairlead;
11

12 VarType Lu; // unstretched cable length
13 VarType H; // Horizontal fairlead force in the local cable element frame
14 VarType V; // Vertical fairlead force
15

16 bool solve_horizontal_equation; // use f_h in the root finding algorithm
17 bool solve_vertical_equation; // '' ''
18

19 public:
20 HORIZONTAL_CATENARY_EQ f_h; // function objects to the two catenary equations for
21 VERTICAL_CATENARY_EQ f_v; // vertical (f_v) and horizontal (f_h) directions
22 }

LisƟng 4: AƩributes of the Element class in MAP. AddiƟonal class aƩributes and methods can be found in Cable-
Factory.cpp source file.

5.3 MAP Functions: The Program Entry Points
In Table 5.2, the functions required in MAP, as defined in ‘NWTC Programmer’s Handbook’ [3], are defined.
These functions offer the calling program an entry point to MAP’s MSQS initialization, solver and output
routines. Blue functions are those not yet implemented in MAP, most of which are geared for tight coupling
(which is not supported in MAP at this time anyways). MAP’s tight coupling option requires additional
information to be passed to the driver program. Depending on the type of root–finding algorithm, numerical
integrator, or linearization technique employed, state derivatives (available through the Jacobian matrix)
may be requested by the driving program. A brief description of the data type passed as arguments into
each function was defined earlier in Table 5.1. The pertinent functions needed to run a minimal MAP
program are:

• MSQS Init() – This function call is called once in the program lifetime. The model is updated
according to the input file commands. MAP itself does not read the input file; instead, each line is
passed to the MAP InitInputType object, either as using the:

– MAP InitInputType.setCableLibraryData(<string>)
– MAP InitInputType.setNodeData(<string>)
– MAP InitInputType.setElementData(<string>)
– MAP InitInputType.setSolverOptions(<string>)

member functions. The <string> function argument is one line in the MAP input file. MAP itself will
parse the string into individual parts ahead of assembling and initializing the model. The initialization
process is best explained by example, as is done in the next chapter.

DRAFT

5.3. MAP FUNCTIONS: THE PROGRAM ENTRY POINTS 37

• MSQS UpdateStates() – This function calls the solve function to find the new node forces based
on input states updates, u(t). This function can be called multiple times, such as the case when a
dynamics simulation is executed.

• MSQS CalcOutput() – The output states are acquired with this function call. Along with MAP UpdateState,
the MAP CalcOutput function can be called multiple times. The MAP map.out file is appended each
instance this function is called.

• MSQS End() – This routine is called once to deallocate memory and destroy u(t), y(t), z(t) and p(t)
class instances. The final object destroyed is MAP OtherStateType.

5.3.1 MSQS UpdateStates() and the MAP Tight Coupling Solution Strategy
We explore, in a procedural context, the process to solve the MSQS system of equations, Algorithm 2. This
function accesses the node and element equations being minimized. Note on line 37, the new values for the
constraint states are updated using a Newton–Raphson technique. The true non–linear solver used in the
algorithm depends on the run–time commands.

Result: Mapping FX, FY, and FZ variables to H and V
input: ψ – relative angle between local element frame and global frame

1 if fairlead->FX.is fixed = true and fairlead->FY.is fixed = false then
2 Hx ← fairlead->FX.value;
3 Hy ← fairlead->FX.value × tan(ψ);
4 H.value ←

√
H2
x +H2

y ;
5 else if fairlead->FX.is fixed = false and fairlead->FY.is fixed = true then
6 Hx ← fairlead->FY.value;
7 Hy ← fairlead->FY.value × 1

tan(ψ) ;

8 H.value ←
√
H2
x +H2

y ;
9 else if fairlead->FX.is fixed = true and fairlead->FY.is fixed = true and fairlead->type 6=
Connect then

10 Hx ← fairlead->FX.value;
11 Hy ← fairlead->FY.value;
12 else
13 Hx ← H.value × cos(ψ);
14 Hy ← H.value × sin(ψ);
15 end
16 Hanchor

x ← Hx;
17 Hanchor

y ← Hy;
18 V anchor ← call getAnchorForce();
19 fairlead->addToSumFX(Hx);
20 fairlead->addToSumFY(Hy);
21 fairlead->addToSumFZ(V.value);
22 anchor->addToSumFX(−Hanchor

x);
23 anchor->addToSumFY(−Hanchor

y);
24 anchor->addToSumFZ(−V anchor);

Algorithm 1: The process used in MAP to update H and V variables in the Element class. For
simplicity, this algorithm assumes the cable is suspended between two points, thereby simplifying the
expressions for Hanchor

x , Hanchor
y , V anchor. In the actual implementation in MAP, different formulations

for the anchor forces are used if the mooring line is resting on the seabed.

DRAFT

38 CHAPTER 5. SOURCE CODE STRUCTURE

Table
5.2:

M
inim

um
functions

calls
required

in
M

SQ
S

routine
to

facilitate
program

m
odularization

within
the

FAST
fram

ework
[3].

Blue
functions

are
those

which
are

unique
to

the
particularcoupling

strategy
being

em
ployed,while

functionsidentified
by

black
fontare

those
shared

between
loose

and
tight

coupling
strategies.

Tightcoupling
requires

a
differentsetoffunctions

to
be

called
since

the
tim

e
integration

and
solving

routines
are

initiated
within

the
calling

program
.

C
oupling

R
equired

Function
Strategy

C
alls

Loose
MSQS

Init(
MAP

InitInputType,
MAP

InputType,
MAP

ParameterType,
NULL,

NULL,
MAP

ConstraintStateType,
MAP

OtherStateType,
MAP

OutputType,
dt,

MAP
InitOutputType,

MAP
ErrStat,

MAP
Message

)
MSQS

UpdateStates(
Time,

coupling
interval,

MAP
InputType,

MAP
ParameterType,

NULL,
NULL,

MAP
ConstraintStateType,

MAP
OtherStateType,

MAP
ErrStat,

MAP
Message

)
MSQS

CalcOutput(
Time,

MAP
InputType,

MAP
ParameterType,

NULL,
NULL,

MAP
ConstraintStateType,

MAP
OtherStateType,

MAP
OutputType,

MAP
ErrStat,

MAP
Message

)
MSQS

Save(
MAP

Save,
MAP

InputType,
MAP

ParameterType,
NULL,

NULL,
MAP

ConstraintStateType,
MAP

OtherStateType,
MAP

OutputType,
MAP

ErrStat,
MAP

Message)
MSQS

Retrieve(
MAP

Save,
MAP

InputType,
MAP

ParameterType,
NULL,

NULL,
MAP

ConstraintStateType,
MAP

OtherStateType,
MAP

OutputType,
MAP

ErrStat,
MAP

Message
)

MSQS
Copy(

Object,
ObjectCopy

)
MSQS

Destroy(
Object

)
MSQS

End(
MAP

InputType,
MAP

ParameterType,
NULL,

NULL,
MAP

ConstraintStateType,
MAP

OtherStateType,
MAP

OutputType,
MAP

ErrStat,
MAP

Message
)

T
ight

MSQS
CalcConstrStateResidual(

Time,
MAP

InputType,
MAP

ParameterType,
NULL,

NULL,
MAP

ConstraintStateType,
MAP

OtherStateType,
MAP

Residual,
MAP

ErrStat,
MAP

Message
)

MSQS
JacobianPInput(

Time,
MAP

InputTpe,
MAP

ParameterType,
NULL,

NULL,
MAP

ConstraintStateType,
MAP

OtherStateType,
MAP

dYdu,
MAP

dZdu,
MAP

ErrStat,
MAP

Message
) a

MSQS
JacobianPConstrState(

Time,
MAP

InputType,
MAP

ParameterType,
NULL,

NULL,
MAP

ConstraintStateType,
NULL,

MAP
dYdz,

MAP
dZdz,

MAP
ErrStat,

MAP
Message

)
b

aFunction
isreplaced

by
MSQS

JacobianPInput(
Time,

MAP
InputType,

MAP
ParameterType,

NULL,
NULL,

MAP
ConstraintStateType,

NULL,
MAP

dYdu,
MAP

dXdu,
MAP

dXddu,
MAP

dZdu,
MAP

ErrStat,
MAP

Message
)

for
linearization

option.
bFunction

is
replaced

by
MSQS

JacobianPConstrState(
Time,

MAP
InputType,

MAP
ParameterType,

NULL,
NULL,

MAP
ConstraintStateType,

NULL,
MAP

dYdu,
MAP

dXdu,
MAP

dXddu,
MAP

dZdu,
MAP

ErrStat,
MAP

Message
)

for
linearization

option.

DRAFT

5.3. MAP FUNCTIONS: THE PROGRAM ENTRY POINTS 39

At each iteration, Algorithm 1 is called to map element forces to fairlead and anchor forces; this line serves
as the mechanism to sum element to the appropriate nodes. After element/node properties are updated, the
catenary equations are evaluated, line 13 for Eq. 3.3a and 13 for Eq. 3.3b. Inside the call ‘element[i]->f h(
)’, the function toggles between Eq. 3.3a or Eq. 3.9a, depending on if the cable is resting on the sea bed.
Likewise, the function call ‘element[i]->f v()’ solves the vertical catenary equations, line 17 in Algorithm
1.

As each element is updated, the node sum–force values are also updated as Algorithm 1 cycles through the
elements. The difference between the desired node force and actual node forces is returned with ‘node[i]->f x(
)’ on line 23 (for the X direction). This process is repeated for the other direction, depending on whether
Newton’s equilibrium equation needs to be solved for the direction in question. The array f(x) is passed to
the numerical solver an minimized.

DRAFT

40 CHAPTER 5. SOURCE CODE STRUCTURE

Result: Solve the values of the constraint state z(t) such that the function evaluations are minimized.
1 repeat
2 j ← 0;
3 for i← 1 to number of constraint states z(t) do
4 x[i]← zi(t) ;
5 end
6 for i← 1 to number of nodes do
7 Set node[i] FX, FY, FZ forces to 0;
8 end
9 for i← 1 to number of elements do

10 Set values for l (in Eq. 3.3a or 3.3b), h (in Eq. 3.9a or 3.9b) and ψ in element[i];
11 call Algorithm 1;
12 if element[i]->solve horizontal equation = true then
13 fj(x)← element[i]->f h();
14 increment j by 1;
15 end
16 if element[i]->solve vertical equation = true then
17 fj(x)←element[i]->f v();
18 increment j by 1;
19 end
20 end
21 for i← 1 to number of nodes do
22 if node[i]->solve X Newton equation = true then
23 fj(x)← node[i]->f x();
24 increment j by 1;
25 end
26 if node[i]->solve Y Newton equation = true then
27 fj(x)← node[i]->f y();
28 increment j by 1;
29 end
30 if node[i]->solve Z Newton equation = true then
31 fj(x)← node[i]->f z();
32 increment j by 1;
33 end
34 end
35 check size of (f(x)) = size of (z(t))

36 J← df(x)
dx

37 z(t)← x− J−1f(x);
38 until ‖f(x)‖ ≤ ε;

Algorithm 2: Description of the process used in MAP to populate the residual function f(x). On line
11, Algorithm 1 is called to sum fairlead and anchor forces to the appropriate node. This is the current
solution strategy invoked in MAP in support of loose coupling. In a future release of MAP, the blue
portion will be converted to an internal solve (nested) routine.

DRAFT
Chapter 6

Python Bindings for MAP

Important Note
The Python module distributed with the MAP archive is compatible with Python 2.7.x. If you are running
a different version of Python, then the MAP source will have to be compiled and linked with Python headers
from the distribution being used on the machine. If this is the case, Boost.Python and PETSc will need to
be configured on the machine MAP is being used on.

Introduction
MAP is developed with wrappers to expose functions and classes to Python using the Boost.Python1 C++
library. The access points into MAP from Python follow the NWTC FAST framework function call con-
vention. Additional class member functions are also exposed to Python to give users ability to manually
change input u(t), parameterp(t), and constraint z(t) variables. This would be ideal for design optimization
problems or running a dynamics simulation. The function arguments, most of which are instances of MAP
classes (objects), are also exposed in Python. The essence of the approach is to re–use MAP entry–point
functions by borrowing the philosophy outlined in the NWTC programmer’s guidelines, and extend these
same functions to Python [3]. This guarantees the NWTC protocol is followed for object creation, initializa-
tion, updating, and destruction process without creating a protocol unique to the MAP–Python interface.
Quintessentially, the FAST calling convention is emulated in Python, which can be used as an instrument
to become familiar with the NWTC FAST modularization framework.

The Python language itself can be used as a scientific tool to assist in the design and optimization of a mooring
system by importing the MAP library. Furthermore, the Numerical Python (NumPy) [7] library allows one
to include MAP inside an optimization package to find a favorable mooring geometry to meet a specific
objective. NumPy contains a suite of numerical solvers and time integrators to aide in the development
of loose or tight coupled dynamics simulation. A complete dynamics model can be constructed in Python,
where MAP is imported as one component of the model. Python can also be used as a means to bind MAP
to other programs not written in Python, C or C++.

6.1 An Example Application
In the minimal example provided in Listing 5, a procedure to call, interact and extract data from MAP using
Python is outlined. Note that in this example, MAP commands are accessible using the NWTC function
nomenclature in Table 5.2. The ordering of functions is also consistent with [3]. As with all Python modules,
the external MAP libraries must be imported using:

import MAPSupport as PyLibMAP
1http://www.boost.org/doc/libs/1_52_0/libs/python/doc/

41

http://www.boost.org/doc/libs/1_52_0/libs/python/doc/

DRAFT

42 CHAPTER 6. PYTHON BINDINGS FOR MAP

import MAP

MAP returns data to Python as a NumPy array, and hence an additional import NumPy is needed to extract
this data. The first object created in Python should always be the initialization object, MAP InitInputType.
This object is used to transmit information from the MAP input file to MAP itself.

6.1.1 Model Initialization
MAP requires the driving program to read the input file. This is done in Python by calling the function:

read MAP input file('input.map' , Init)

where Init is an instance of the MAP InitInputType class. The read MAP input file() is a Python
function given in Appendix A. For a more meaningful explanation on how MAP InitInputType class operates,
consider the following example:

>>> Init = MAP InitInputType()
>>> Init.setCableLibraryData('steel 0.25 7000 200E9 1.0')
>>> Init.setCableLibraryData('nylon 0.30 1400 14E9 1.0')

>>> Init.setNodeData('1 fix 400 0 -350 0 0 # # #')
>>> Init.setNodeData('2 connect #90 #0 #-80 0 0 0 0 0')
>>> Init.setNodeData('3 vessel 20 30 -10 0 0 # # #500000')
>>> Init.setNodeData('4 vessel 20 -30 -10 0 0 # # #500000')

>>> Init.setElementData('1 steel 520 1 2 plot x pos')
>>> Init.setElementData('2 nylon 90 2 3 plot z force')
>>> Init.setElementData('3 nylon 90 2 4 plot z force')

>>> Init.setSolverOptions('-snes type newtontr')
>>> Init.setSolverOptions('-ksp type preonly')
>>> Init.setSolverOptions('-pc type lu')
>>> Init.setSolverOptions('-pc factor nonzeros along diagonal')
>>> Init.setSolverOptions('-snes atol 1e-6')
>>> Init.setSolverOptions('-snes rtol 1e-6')
>>> Init.setSolverOptions('-snes stol 1e-6')

In this example, the model is manually initialized using the input file template in Table 4.1. The environ-
mental properties (the sea density, depth, and gravitational constant) are set afterwards. The remaining
objects defined in Table 5.1 are created after passing input file arguments into the MAP InitInputType class
instance. The MAP Message and MAP ErrStat objects pass error code information between Python and the
MAP module. By default, the Booth.Python library passes integer, real number, and string arguments by
value; to allow references, message strings and error integers to be encapsulated within objects, and the
objects themselves are passed by reference.

With the simple function call MAP.MSQS InitIntpuType(...), the multi–segmented model is initial-
ized. At this instance, the summary.map file is created and the equilibrium profile is solved. If the model
fails to initialize, either through an indeterminate solution or because the input file does not meet format
specifications, the instruction:

if err.error status() != 0 :
print msg.status()

will print an error message to the command line if the error code is a value other than 0. The function calls:

print d.details()

DRAFT

6.1. AN EXAMPLE APPLICATION 43

d.plot(MAP.MSQS ErrStat , MAP.MSQS Message)

provide model information at run–time. The d.details() member function prints the identical information
contained in the summary.map file to the screen. If one wishes to view the list of variables associated with
the input state, the u.details() member function can be called to print the variables to the screen.
The function *.details() is also exposed to the parameter, constraint, and output states. The plot
functionality is accessed in MAP using the d.plot(MAP.MSQS ErrStat , MAP.MSQS Message) command.
This line will plot elements raising the PLOT option in the MAP input file.

6.1.2 Executing the Program
While MAP.MSQS InitInputType is called a single time in the program, the functions MAP.MSQS UpdateStates(
...) and MAP.MSQS CalcOutput(...) can be called multiple times. Each instance the input states
u(t) are updated, MAP.MSQS UpdateStates(...) is called to calculate the new equilibrium mooring line
profile based on the current fairlead displacements. Following this call, the MAP.MSQS CalcOutput(...)
function is called to append the map.out file with current information pertaining to the mooring line.

6.1.3 Python Operations on MAP Objects
Though not demonstrated in Listing 5, the MAP states u(t), y(t), z(t), and p(t) have predefined–specified
member functions to update and set state variables2. This provides the tools to interact and modify variables
in MAP. At the Python prompt, typing:

>>> print u.details()

will print the following to the command line:

X[3]: 20.000
Y[3]: 30.000
Z[3]: -10.000
X[4]: 20.000
Y[4]: -30.000
Z[4]: -10.000

This provides information on the current state of the input variables. The integer within brackets in the
node number. Likewise, the constraint state variables are:

>>> print z.details()
X[2]: (39.315)
Y[2]: (-0.000)
Z[2]: (-92.676)
H[1]: (224.857)
V[1]: (939.248)
H[2]: (207.687)
V[2]: (493.021)
H[3]: (207.687)
V[3]: (493.021)

Suppose the objective is to update the Vessel fairlead displacements such that X = 25 meters and the
vertical displacement is X = −9 meters. The *.set(...) member function serves this specific role. This
function is overloaded to permit two conventions to updating variables. Convention one allows one to set
variables using the format:

2Though the MAP OtherStateType object cannot be modified in this fashion, as this would break the point of having the
MAP OtherStateType object serve as a container class as depicted in Fig. 5.1.

DRAFT

44 CHAPTER 6. PYTHON BINDINGS FOR MAP

>>> u.set(int , double)

where int is array index being updated and double is the new value. Executing the following commands
will update u(t):

>>> u.set(0 , 25.0)
>>> u.set(2 , -9.0)
>>> u.set(3 , 25.0)
>>> u.set(5 , -9.0)

Option two will take a NumPy array as an argument, where the argument size must be equal to the size
of u(t). An assertion run–time error will be returned if the arrays do not match sizes. An example for the
second option is:

>>> u update = u.get()
>>> u update[0] = 25.0
>>> u update[2] = -9.0
>>> u update[3] = 25.0
>>> u update[5] = -9.0
>>> u.set(nu update)

Both options produce the following as an output:

>>> print u.details()
X[3]: 25.000
Y[3]: 30.000
Z[3]: -9.000
X[4]: 25.000
Y[4]: -30.000
Z[4]: -9.000

Ideally, the second option would be more efficient since Python will only need to access the MAP module once
versus four times with the alternative. With the input states now updated, the MAP.MSQS UpdateStates
and MAP.MSQS CalcOutputs functions can be called. The *.get(...) and *.set(...) member
functions are exposed to u(t), z(t), y(t), and p(t).

6.1.4 Terminating MAP
As with any program where memory is dynamically allocated, the MSQS C++ objects must be destroyed at
the completion of the program. When MAP.MSQS End(...) called, MAP will write a final statement to
the map.out final signaling the simulation status and destroy all objects. If objects cannot be deleted safely,
an error message will be returned. A description of the failure will also be returned.

DRAFT

6.1. AN EXAMPLE APPLICATION 45

1 import numpy as np

2 import MAP

3

4 InitIn = MAP.MAP_InitInputType() # Before we can read in data from the MAP input file, we must

5 # created an instance of a MAP initialization object

6

7 read_MAP_input_file('input.map' , Init) # Read the MAP input file

8 Init.setDepth("-350") # Set depth. This is MAP input file independent

9 Init.setGravity("9.81") # Set gravity. This is MAP input file independent

10 Init.setSeaDensity("1025") # Set water density. This is MAP input file independent

11

12 InitOut = MAP.MAP_InitOutputType()

13 # Create instances of MAP objects. This is MAP's implementation of the required NWTC types

14 # in a FAST coupling module.

15 d = MAP.MAP_OtherStateType()

16 u = MAP.MAP_InputType()

17 p = MAP.MAP_ParameterType()

18 z = MAP.MAP_ConstraintStateType()

19 y = MAP.MAP_OutputType()

20 msg = MAP.MAP_Message()

21 err = MAP.MAP_ErrStat()

22

23 # Initialize the model. This is called once.

24 MAP.MSQS_Init(InitIn, u, p, None, None, z, d, y, None, InitOut, err, msg)

25 if err.error_status() != 0 :

26 print msg.status()

27

28 print msg.converge_reason()

29 InitIn = None;

30 InitOut = None;

31

32 # optional statements exposing MAP function in python.

33 print d.details() # Model summary file is printed to the screen

34 d.plot(err , msg) # Model is plotted using matplotlib

35

36 ############ START Time Step ############ <----------------+

37 # run every time step from t_0 to t_f # |

38 MAP.MSQS_UpdateStates(0, 0, u, p, None, None, z, d, err, msg) # |

39 if err.error_status() !=0 : # |

40 print msg.status() # |

41 # |

42 MAP.MSQS_CalcOutput(0, u, p, None, None, z, d, y, err, msg) # |

43 if err.error_status() != 0 : # |

44 print msg.status() # |

45 # |

46 # if running a time-step operation, u.set([int] , [real]) # |

47 # to update the input states # |

48 ############ END Time Step ############ -------------------------+

49

50 # Destroy objects. This is called once

51 MAP.MSQS_End(u, p, None, None, z, d, y, err, msg)

52 if err.error_status() != 0 :

53 print msg.status()

LisƟng 5: Example program for execuƟng MAP in Python.

DRAFT

46 CHAPTER 6. PYTHON BINDINGS FOR MAP

DRAFT
Bibliography

[1] American Petroleum Institute. Recommended Practices for Planning, Designing, and Constructing Ten-
sion Leg Platforms. American Petroleum Institute, Washington, D.C., USA, 1997. API Recommended
Practice 2T.

[2] M. Irvine. Cable Structures. Dover Publications, Mineola, NY, USA, 1992.

[3] B.J. Jonkman, J.M. Michalakes, J.M. Jonkman, M.L. Buhl, and M.A. Platt, A. amd Sprague. NWTC
Programmer’s Handbook: A Guide for Software Development within the FAST Computer–Aided En-
gineering Tool (DRAFT). NREL Technical Report, NREL/TP–xxxx–xxxx, Golden, CO, contract no.
de–ac36–08g028308 edition, 2012.

[4] J.M. Jonkman. Dynamics modeling and loads analysis of an offshore floating wind turbine. The National
Renewable Energy Laboratory, Technical Report NREL/TP-500-41958, November 2007.

[5] W. Kozak, K. Zhou and W. Jinsong. Static analysis of cable-drive manipulators with non-negligible
cable mass. IEEE Transactions on Robotics, 22(3):425–433, 2006.

[6] M. Masciola, M.D. Nahon and F.R. Driscoll. Static analysis of the lumped mass cable model using a
shooting algorithm.

[7] T. E. Oliphant. Guide to NumPy. 2006. Entered the Public Domain in August 2008.

[8] S. Oliveira and D.E. Stewart. Writting Scientific Software: A guide to Good Style. Cambridge University
Press, New York, NY, USA, 2006.

[9] B. Paul and A. Soler. Cable dynamics and optimum towing strategies for submersibles. pages 507–513,
Houston, TX, May 2–5 1995. I 15th Annual Offshore Technology Conference.

[10] A.H. Pyrot and A.M. Goulois. Analysis of cable structures. Computers & Structures, 10:805–813, 1979.

[11] Z. Wang, L. Guo and F. Yuan. Quasi–static three–dimensional analysis of suction anchor mooring
system. Ocean Engineering, (37):1127–1138, 2010.

[12] J.F. Wilson. Dynamics of Offshore Structures. John Wiley & Sons, Hoboken, NJ, 2003.

47

DRAFT

48 BIBLIOGRAPHY

DRAFT

49

DRAFT

50 APPENDIX A. PYTHON READ FUNCTION

Appendix A

Python Read Function

1 def read_input_file(fileName , init):

2 f = open(fileName , 'r') ; line_offset = [] ; offset = 0

3 for line in f:

4 line_offset.append(offset) ; offset += len(line)

5 f.seek(0) ; i = 0

6

7 for line in f:

8 words = line.split()

9 if words[0] == "LineType": # if the line starts with 'LineType', then we are reading

10 next(f) ; LineType_ref=i # LINE DICTIONARY segment of the MAP input file.

11 elif words[0] == "Node": # if the line starts with 'Node', then we are reading

12 next(f) ; Node_ref=i # NODE PROPERTIES segment of the MAP input file.

13 elif words[0] == "Line": # if the line starts with 'Element', then we are reading

14 next(f) ; Element_ref=i # LINE PROPERTIES options segment of the MAP input file.

15 elif words[0] == "Option": # if the line starts with 'Option', then we are reading

16 next(f) ; Option_ref = i # SOLVER OPTIONS segment of the MAP input file.

17 i += 1

18

19 f.seek(line_offset[LineType_ref+2])

20 for line in f:

21 if line[0] == "-" : break # if line begins with '-', then LINE DICTIONARY

22 else : init.setCableLibraryData(line) # section of the MAP input file is read in

23

24 f.seek(line_offset[Node_ref+3])

25 for line in f:

26 if line[0] == "-" : break # if line begins with '-', then NODE PROPERTIES

27 else : init.setNodeData(line) # section of the MAP input file is read in

28

29 f.seek(line_offset[Element_ref+4])

30 for line in f:

31 if line[0] == "-" : break # if line begins with '-', then LINE PROPERTIES

32 else : init.setElementData(line) # section of the MAP input file is read in

33

34 f.seek(line_offset[Option_ref+5])

35 for line in f:

36 if line[0] != "!" : init.setSolverOptions(line)

LisƟng 6: Example funcƟon used for extracƟng lines from the MAP input file from Python.

