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ABSTRACT

The Beddoes-Leishman model (with some modifications) for predicting pitching
moment coefficients on airfoils operating under dynamic conditions has been added to
the AeroDyn subroutines. These subroutines are used to determine aerodynamic loads on
wind turbine blades in the ADAMS, YawDyn and DynStall computer programs, which
model wind turbines and aid in their design.

This thesis explains the usefulness of pitching moment calculations for wind
turbine blades, the methods used to calculate them and compares simulated pitching
moment coefficients to test data for different airfoils under various operating conditions.
Finally, torsional springs of various stiffnesses were added to an ADAMS model to
investigate the effect of aerodynamic pitching moment on angle of attack, pitch angle,
power and flap moment.

The implemented model predicted pitching moments with reasonable accuracy for
all of the conditions that were investigated and is appropriate for use in the AeroDyn

subroutines.
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INTRODUCTION

History

Windmills have been used in the United States for more than a century (Spera,
1994). Examples of early windmill technology in the United States include the
“American Windmill” and a windmill erected by inventor Charles Brush. The
“American Windmill” was a five-meter diameter mill, capable of producing
approximately one horsepower in a 7 m/s wind; enough to support most of a farms’ water
pumping needs. In 1888, inventor Charles Brush erected the first windmill to generate
electricity. This windmill had a 17-meter diameter, high solidity rotor with a rated power
output of 12 kW.

Significant advancements in windmill technology, however, did not occur until
the 1970°s (Gipe, 1995). Between 1973 and 1978 there was a dramatic rise in the price
of oil. These increases, in addition to concerns about over-reliance on fossil fuels and the
need to reduce carbon-dioxide (CO,) emissions, renewed interest in alternative energy
sources, in particular, wind energy.

At present, the most popular designs are two- or three-bladed, horizontal axis
wind turbines. These modern machines vary in power production from a few watts to

over three megawatts.



Benefits of Wind Energy

Wind energy is an ideal source of electricity for several reasons. First, wind

energy produces virtually no CO; emissions (San Martin, 1989). Second, wind energy is

cost-competitive in some markets. The cost of wind generated electricity has dropped

sharply since 1980, when it cost $0.35 per kW-hr (Acona et al., 1996). Today wind

generated electricity costs less than $0.05 per kW-hr. Thus, today’s cost is already

competitive with some conventional energy sources and will become even less expensive

as wind power technology advances. Third, wind energy offers other economic benefits

that make it more competitive in the long term including less dependence on fossil fuels

and greatly reduced environmental impact.

Finally, wind power has diverse applications including:

Remote power generation. Where there are no power lines present or the cost
of running power lines is too expensive (Note: It costs approximately $90,000
per mile to run a power line in Southern California) a wind turbine can supply
power. Often times wind turbines are combined with solar panels and diesel
generators to form a hybrid system.

Wind farm applications that connect many wind turbines together to form a
power plant such as the Buffalo Ridge site in southwestern Minnesota.
Northern States Power Company operates this wind farm which contains over
70 Kenetech 33-MVS (250 kW) wind turbines.

Supplemental power uses such as in Traverse City, Michigan which recently
installed a Vestas 600-kilowatt wind turbine in order to keep up with its need

for more electrical energy. Some growing communities are using wind power



as an alternative to other energy sources such as coal or natural gas. They find

it to be a cleaner solution to their escalating energy needs.

The Future of Wind Energy

Although wind energy has many economic advantages and diverse applications,
the rest of the world is currently installing wind power at a much faster rate than the
United States (US) (Ancona et al., 1996). The US had 36% of the world’s total installed
wind power capacity of 4900 megawatts at the end of 1995. This is a significant
reduction from the US’s 50% stake posted in 1994 and its 90% share in 1988. Europe
had 2500 MW of installed wind capacity at the end of 1995. This is nearly three times its
capacity in 1992. World wide, wind power has a bright future.

Wind power capacity is growing at an average annual rate of 20%. Conventional
fuel sources are only growing at a 3% or less rate annually. The American Wind Energy
Association (AWEA) predicts that over 18,000 MW of new wind power capacity will be
installed around the world by 2005 including 2700 MW to be installed in the US
(AWEA, 1996).

In order to accelerate wind energy’s contribution to generating electricity in the
United States, development of low-cost, technologically advanced wind turbines must be
a goal. Fortunately, the use of computer modeling has enabled turbine manufacturers to

make significant advances toward this goal.

Computer Modeling

Computer models of wind turbines have the potential to save considerable time

and money. One no longer needs to design, build and test a prototype in order to



discover whether it will do its intended job. Instead, computer models can do most of the
design and test work in a more timely and cost effective manner,

In order for computer models to be most useful, they must accurately represent
the wind turbine and the environment to which it is exposed. The model must be
compared to test data collected and processed in a thorough and accurate manner. Once a
model accurately predicts test results, the code is considered to be valid. A validated
code can be used as a tool to predict future events. It can predict dynamic loading,
fatigue life, power, stress, yaw behavior, etc. The interplay of all of these factors allows
one to change components of an integral design in order to optimize the wind turbine’s
performance.

Currently, there are a few computer codes that predict the dynamic behavior of
wind turbines. FAST was developed at Oregon State University and uses up to 14
degrees of freedom to predict loads on the wind turbine blades, tower, and gear box shaft
(Wilson et al., 1996). It also predicts power generated by the turbine as well as yaw
motions (of passive yaw systems).

BLADED was developed by Garrad-Hassan and Partners, Ltd. of the United
Kingdom (Quarton, D.C., 1996). It performs many of the same functions of FAST. Over
the past six years, BLADED has been validated against test data from over one dozen
wind turbines of various size and configurations.

Two computer codes were developed at the University of Utah to analyze
horizontal axis wind turbines. They are ADAMS (with the AeroDyn subroutines,
referred to as ADAMS) and YawDyn. ADAMS is able to incorporate hundreds of

degrees of freedom in the wind turbine model. ADAMS models can be accurately built



but require a lot of time to construct and to run. YawDyn, on the other hand, is a much
simpler code to use. YawDyn is especially helpful in the early stages of a design since
models are easy to alter and run quickly on a personal computer.

Both ADAMS and YawDyn utilize a series of acrodynamic subroutines called the
AeroDyn subroutines. These subroutines determine all of the aerodynamic loads that act
on the wind turbine blades. It has been shown that wind turbine blades are subject to
dynamic stall which occurs as a result of unsteady airfoil motion (Leishman and Beddoes,

1986, McCrosky, 1981, Pierce, 1996).

Dynamic Stall

Dynamic stall causes delayed stall (from the static stall value), increased
maximum lift coefficient, Cp, max and hysterisis in the lift, drag and moment coefficients.
Thus, the aerodynamic forces are not unique for a given angle of attack as they are in
steady aerodynamic situations. This is very important from the standpoint of computer
modeling. Dynamic stall must be included in these models in order to accurately
represent what is actually occurring (Pierce, 1996, Pierce and Hansen, 1995).

Because of the great effect that dynamic stall has on wind turbine rotors, Pierce
(1996) added dynamic stall calculations to the AeroDyn subroutines. By using the
Beddoes - Lieshman (1986; 1989) model to calculate lift and drag, Pierce’s models
showed a significant increase in accuracy when compared to the same model that used
only static data.

Dynamic stall affects the rotor in many ways by accounting for a time delay in
stall. Dynamic stall is represented in the computer models by an effective angle of

attack, which can be quite different from the actual (instantaneous) angle of attack. The



lift, drag and moment coefficients are all different from their static values as a result.
This affects other factors such as aerodynamic loads on the blades and power production
from the wind turbine’s generator. Although all of the aforementioned computer codes
perform some dynamic stall calculations on the blades, none of them considers the

dynamic stall effects associated with the pitching moments of the blades.

Pitching Moments

Pitching moments are one of the three loads generally referred to when speaking
of airfoils. The others are lift and drag. The common point of application of these forces
is at the quarter chord point on the airfoil, ¢/4. See Figure 1.1 for an illustration. This
paper focuses on the pitching moments. Pitching moments are generated due to change
in air pressure around an airfoil. The pitching moment, PM, is rei)resented by:

PM = Cy(1/2pV?)cA Y
where Cy is the pitching moment coefficient, p is the air density, V is the local flow
velocity, c is the chord length and A is the planform (projected) area.

Dynamic pitching moments can vary drastically from the static pitching moment
depending on the airfoil shape, angle of attack range, Reynold’s number and reduced
frequency. The nondimensionalized reduced frequency, k is:

k = 2moxc/(2V) (2)
where o is the oscillation frequency in Hertz, c is the chord of the airfoil section and V is
the wind speed relative to the airfoil.

Figures 1.2 and 1.3 illustrate the stages of dynamic pitching and dynamic flow

and how they affect the normal force coefficient and pitching moment coefficient.
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Figure 1.1: An airfoil with lift and drag forces and pitching moment acting on it at the
one quarter chord (c/4) location. The local air velocity is V and the angle of attack is o
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Figure 1.3: Typical representation of pitching moment coefficient vs. angle of attack for
an airfoil experiencing dynamic stall. 1- vortex detaches; 2-vortex reaches the trailing
edge of the airfoil; 3-full flow separation; 4-start of flow reattachment.
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Figure 1.4 shows an NREL S809 airfoil tested under two conditions. One line in
the figure represents the static C,, values. The other represents the dynamic values,
which are obtained when oscillating the airfoil at a reduced frequency of 0.026. Figure
1.5 shows the same airfoil operating under exactly the same conditions except with a
reduced frequency of 0.080. Notice that the higher value of reduced frequency associated
with Figure 1.5 causes more dynamic stall and a more open hysterisis loop. In fact, the
dynamic response shown in Figure 1.4 is slow enough that it is virtually identical to the
static data.

Figure 1.5 also illustrates how dynamic stall allows for a large variance in Cy
values for a given angle of attack. For example, at an angle of attack of 22 degrees, the
Cwm value can be -0.34 (for an increasing angle of attack) or -0.15 (for a decreasing angle
of attack).

Until recently, pitching moment information was considered to be unnecessary.
Wind turbine blades had virtually no torsional movement. Blades were very stiff,
particularly in torsion. However, some current turbines, such as the Carter machines,
incorporate a very soft set of blades. Stoddard (1988) found that soft blades (such as the
Carter 300 blade) exhibit a great deal of live “elastic twist” which greatly affects power
output and blade loads. He also observed that this can cause considerable discrepancies
between model predictions (which do not account for dynamic pitching moment effects)
and measured power curves. According to the National Renewable Energy Laboratory’s
(NREL) predictions for future trends in wind turbines, lighter, more flexible machines
will become increasingly popular (Thresher, et al. 1994). Jack Cadogan and his

colleagues at the U.S. Department of Energy (Cadogan, et al. 1996) believe that by the
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year 2005, systems will be very different from today’s turbines. Two of the predicted
changes are flexible turbine systems and lighter systems.

Pitching moment calculations are also very helpful in the case of machines that
employ pitch control. Torsional movement can occur as the result of a soft pitch control
system. This condition occurs when the pitch control system becomes sloppy due to age,

wear or poor design.

Goals
The goal of this thesis was to implement an accurate model of pitching moments
into the AeroDyn subroutines. The YawDyn and ADAMS codes (which incorporate the
AeroDyn Subroutines) would then be run to determine if a significant difference existed
from previous codes.

The steps taken to achieve these goals are as follows:

1. Static Cy data were added to their respective airfoil tables and the AeroDyn
subroutines were changed to output static Cy values for a given angle of
attack.

2. AeroDyn was then changed to account for dynamic stall effects and Cy output
from DynStall (which also utilizes AeroDyn) was compared to 2-D test data.

3. After getting satisfactory results for three commonly used wind turbine
airfoils (NACA 4415, NREL S809 and the LS1-0417), YawDyn simulations
were compared to field test data from the Combined Experiment Rotor (CER)
wind turbine.

4. Finally, an ADAMS model of the CER was run with various torsional blade

stiffnesses to determine if the implemented pitching moment calculations had
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a substantial or negligible effect on the computer model predictions of pitch

angle, angle of attack, power and flap moment.



METHODS

This chapter describes how dynamic pitching moment calculations are performed

in the AeroDyn subroutines and the information required to make these calculations.

The Method for Determining Pitching Moments

The AeroDyn subroutines (which are used by DynStall, YawDyn and ADAMS)
were changed in order to calculate dynamic pitching moments. The basic method of
calculating dynamic pitching moments is described by Leishman and Beddoes (1986,
1989) and Leishman (1988, 1989).

Pierce (1996) successfully used the Beddoes-Leishman models (with some
modifications) to predict dynamic lift coefficients (Cp) and drag coefficients (Cp) in
YawDyn and ADAMS. Pierce gives a brief description of Beddoes and Leishman’s
methods as well as the modifications made to their techniques.

A detailed description of the unsteady aerodynamic behavior and dynamic stall
using the indicial method is given in the aforementioned writings of Leishman and
Beddoes. (Note: an indicial function is the response to a disturbance which is applied
instantaneously at t=0 and held constant thereafter (i.e., a step function disturbance)). In
these papers, Beddoes and Leishman discuss methods for finding Cy, Cp and Cy.

The present work uses some of Pierce’s methods, the methods of Beddoes and

Leishman and some modifications to the Beddoes-Leishman models to calculate dynamic
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pitching moments and pitching forces. What follows is a description of the processes
used.
The model analyzes four flow states. Each flow state accounts for a component of
the total pitching moment coefficient, Cy. The flow states are:
1. Impulsive pitching moment coefficient due to a step change in angle of
incidence, Cpymy.
2. Impulsive pitching moment coefficient due to a step change in pitching rate,
Cmo.
3. Nonlinear moment force coefficient associated with trailing edge flow
separation, Cyg.
4. Vortex induced pitching moment coefficient, Cyy.
These four flow states are described in detail in the following paragraphs. For a given
time step, these individual coefficients are additive. When summed together, they
represent the pitching moment coefficient at a given blade element location for a given
time.

Cum = Cwmi + Cumo + Cur + Cuv (3)

Cwmi and Cmo

Impulsive loading relates to the loads an airfoil encounters as a result of an
instantaneous change in incidence (i.e., angle of attack) or pitch rate. There are two
moment coefficient terms that are correlated with impulsive loading. First, there is the
impulsive pitching moment coefficient due to a step change in angle of incidence, Cy.

Second is the impulsive pitching moment coefficient due to step change in pitching rate,
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Cmo- A unit step change in incidence causes a relatively high initial value of Cy which

decays exponentially with time. The instantaneous value of Cyy is expressed as:
Cwi(#) = (-1/M) exp(-1 /K) @)
where K; is an empirically derived time constant equal to 0.75. f is nondimensionalized

time, ¢t =tV/c. M is the Mach number.
Chq also decays exponentially with time. However, the equation that represents
its instantaneous value requires two exponential decay terms:
Cuio(7) = (0.25/Mexp(-1 /Ky) - (L/(3M))exp(-1 /KT) (5)

For an explanation of the terms in these equations, see Leishman and Beddoes (1986).
Figure 2.1 and 2.2 illustrate the exponential decay that is associated with CMI(f) and

CMQ(IT ) due to a step change in the incidence or pitch rate of an airfoil.

Leishman and Beddoes (1986) devised an effective model that responds to the
continuously varying incidence and pitch rates encountered by rotating blades. At each
time step, the model adds a new instantaneous term to terms from previous time steps
(which are decaying). By continuously updating these terms, Leishman and Beddoes
established the following equations for Cyy and Cygq:

Cwr = -Cni/4 (6)

Cmaq = (-Crno / 4) - (KP°T1/ 3M)(Dgn- D” gn) (7

The impulsive normal force coefficient due to a change in the angle of incidence is Cni.
The impulsive normal force coefficient due to a change in pitching rate is Cno. As

before, Leishman and Beddoes (1986) explain the terms in these equations in full detail.
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Cwmr

The nonlinear pitching moment coefficient associated with trailing edge flow
separation, Cyp, is another term that contributes to the total moment coefficient.
Determining Cyr requires trailing edge separation point and dynamic angle of attack

information.

Calculating the trailing edge separation point. Cyr includes both circulatory and
noncirculatory components of Cy. The circulatory component is dependent on the
trailing edge separation point, f which is defined as:

f =xlc (8)
where x is the distance from the leading edge to the point of flow separation and c is
chord length of the airfoil. The approximate separation point location is calculated using

the Kirchhoff theory of simple flow trailing edge separation (Thwaits, 1960).

2
f = £byC, TaC,y - 1] ©)
The sign, + or -, of equation 9 is selected to match the sign of quantity in brackets. Cy is
the static normal force coefficient for a given angle of attack, o, and Cyq is the slope of

the normal force versus angle of attack curve. Equation 9 defines f for all angles of

attack even though Kirchhoff’s theory was developed for airfoils operating in a limited

range of angles of attack. When used this way, f does not literally represent the
separation point location and f can be a negative number as is illustrated in Figure 2.3.
Using equation 9 to calculate the separation point assumes that f is represented by this

equation throughout the entire range (360 degrees) of angles of attack.
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Note that this method of finding the trailing edge separation point is a
modification to the Beddoes — Lieshman method. They use an empirical equation that
works for a limited range of angles of attack and therefore is not acceptable for wind
turbine applications, which require aerodynamic data for the entire 360 degree range of
angles of attack.

For unsteady flow, there exists a modified separation point, f’, due to the
temporary effects on the airfoil pressure distribution and the boundary layer response. By
using the effective angle of attack, «’, as the locator, f’ is retrieved from a “look-up
table.” Leishman and Beddoes give an equation for calculating an effective angle of
attack, o, which is defined as:

a'=Cy/Cy (10)
where C,, is the first order lagged normal force coefficient.

Furthermore, additional effects presented by the unsteady boundary layer response
are modeled by applying a first order lag to f’. The result is the final unsteady trailing
edge separation point, f”, which represents the effective separation point for an airfoil
experiencing unsteady (dynamic) flow. f” is defined as:

f” = f" -Dm (11)
Dy, is a deficiency function described by Leishman and Beddoes (1986). If the flow is

steady, then the values of f, f’ and f” are all identical and Cyr is equal to the static

Cw value at the given angle of attack.
Pierce (1996) used equations 23 and 25 from Leishman and Beddoes (1989) to get

Cy and Cc values as functions of f”. Subsequent values of Cp and Cp were calculated
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directly from Cy and Cc at the equivalent angle of attack, &". However, to find the value
of the nonlinear moment coefficient, Cyr, Leishman and Beddoes suggest fitting a curve
to the data using a polynomial of the following form:
Cwme = (Ko + Ki(1- f”) + Kasin(m( £ )™)Cn + Cmo (12)
This equation contains four constants (Ko, K;, Kz and m) which are different for
each airfoil and need to be determined through curve fitting. This poses the problem of
coming up with each constant for a given airfoil and changing these constants every time
the airfoil shape changes. This process would be very time consuming and tedious. Even
if one did do this, the equation works well for only a limited angle of attack range. It
does not work for the wide range of angles of attack that are of interest for wind turbine
blades.

Using the dynamic angle of attack to locate CMr. An alternative to the curve fit

method, as a way to come up with Cy, is to use a “look up table” which correlates angle
of attack with nonlinear moment coefficient and separation point. This would also run
the computer code faster than a curve fit calculation. However, the final unsteady
separation point can not be used to locate the angle of attack from the “look-up table”
because the separation point values are not unique throughout the entire 360 degree range
of alpha values (as seen from Figure 2.3). One would also be unsuccessful retrieving Cur
values from a known separation point value. This point is illustrated in Figure 2.4, which

shows multiple moment coefficient values for each f value. Therefore, a method of

calculating the dynamic angle of attack was devised. The general form of equation 11

was used however, f values were replaced by angles of attack so that:

" = o'-Dey (13)
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Figure 2.3: Separation point versus angle of attack for an NACA 4415 airfoil.
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The deficiency function, Dgy, is similar to the deficiency function from equation 11 such
that: Dy = Dam1yeXp(AS/Ta) + (@ - 0 1.1)exp(AS/(2T)). AS is the change in distance
traveled by the airfoil in semichords. The value of T, is to be determined from
experimental data and is discussed further in the Time Constants Results section. Note
that this exponential decay is assumed by analogy with the separation point deficiency
function. The validity of this method will be shown when comparing the values of Cy
derived from the AeroDyn subroutines to corresponding test data. Such comparisons are
discussed in the Time Constant Results and Two-Dimensional Wind Tunnel Data

Simulations Results sections.

The formation and shedding of vortices also contributes to Cy. The increment of

the pitching moment due to an aft-moving center of pressure, Cyy is formulated as:

Cwv =-CEC (14)

v

where CP is the vortex-induced center of pressure (= 0.20(1 - cos(z7, /T,))) and C L s

the vortex induced normal force coefficient. Leishman and Beddoes (1989) explain
equation 14 in full detail. The vortices have little effect on the pitching moment until

they are close to the trailing edge of the airfoil. 7, tracks the position of the vortices such
that 7, = O at the onset of separation and 7, = 7,, when the vortex is located at the
trailing edge. The vortex strength decays exponentially as it leaves the trailing edge of

the airfoil and 7,>7,,. T, represents the amount of time it takes for the vortex to

vi
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convect across an airfoil. Higher numbers represent an increase in convection time. T,

is discussed further in the Time Constants Results section.

As stated in equation 3, the final value of the pitching moment coefficient is the
sum of the four components discussed above: Cy = Cui + Cymg + Cumr + Cuy.

These four components of the pitching moment coefficient along with the final
value of Cy are illustrated in Figures 2.5-2.9. All of the aforementioned figures are for an
NACA 4415 airfoil at a Reynolds number of one million and a reduced frequency of
0.096 (except Figure 2.6, which has a reduced frequency of 0.031). Figure 2.5 represents
Cymr. The prominence of the hysterisis would decrease if the reduced frequency
decreased. This point is illustrated in Figure 2.6, which has a reduced frequency of 0.031.
Also note that the hysterisis witnessed in Cyy and Cyv would be less prominent if the
reduced frequency decreased. Figure 2.7 shows both Cyy and Cyg. Cwmgq 18 virtually zero
because the change in pitch rate is nearly zero. Cuy on the other hand is prominent
because the pitch angle is changing. For the case shown in Figure 2.7, it is an elliptically
shaped curve centered about the x-axis with a maximum value of 0.027. Cyy is shown in
Figure 2.8. It clearly shows that the vortex has no effect on the pitching moment unless
the angle of attack is increasing and greater than the stall angle. Under these conditions,
the force of the vortex increases as it convects across the airfoil. It reaches its maximum
value when the vortex reaches the trailing edge of the airfoil and then decays as the vortex
is shed. Finally, Figure 2.9 represents the value of Cy. It 1s the sum of Figures 2.5, 2.7

and 2.8.
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Figure 2.5: NACA 4415 component of the moment coefficient which is asssociated with
trailing edge flow separation versus angle of attack. 0=20+10sinot, k=0.096, Re=0.9x10°.
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Figure 2.6: NACA 4415 component of the moment coefficient which is asssociated with
trailing edge flow separation versus angle of attack. 0=20+10sinot, k=0.031, Re=0.9x10°.
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Figure 2.7: NACA 4415, Cm and Cwuq versus angle of attack. 0=20+10sinmt, k=0.096,
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As stated earlier (in equation 2), the pitching moment, PM, is equal to

Cm(1/2pV3)cA.

Static Airfoil Table Requirements

Static airfoil information is necessary in order to run YawDyn, ADAMS and
DynStall (see Appendix A) computer models. A sample airfoil table is illustrated in
Appendix B. For each airfoil used in a given model, a separate airfoil table must exist.
Airfoil tables must be built accurately in order to have a reliable computer model.
Constructing accurate static airfoil table requires careful examination, manipulation and
extrapolation of the available data. Some of the steps necessary to build airfoil tables are
discussed in the following paragraphs.

This research uses static data that were compiled at the Ohio State University
(OSU) by Gregorek and Reuss (1994). Three airfoils were examined: NACA 4415,
NASA LS1-0417, and the NREL S809. Gregorek and Reuss also ran tests using these
airfoils under dynamic situations oscillating sinusoidally at various frequencies and angle
of attack ranges. All wind tunnel data gathered by Gregorek and Reuss are referred to as
OSU test data.

By using the static airfoil data and the input parameters (time, angle of attack and
wind velocity) of the dynamic tests, the computer program (code) DynStall is able to
predict the dynamic pitching moments. DynStall, originally written by Pierce (1996), was
updated in the present work to account for pitching moments. The output of DynStall is

compared to the dynamic pitching moments from the OSU tests. This topic is discussed
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further in the Two-dimensional Wind Tunnel Data Simulation Results section of this

thesis.

Determining Drag Coefficients

The static OSU data includes pressure drag and wake drag for each angle of
attack. Figure 2.10 illustrates an example of these values for an NREL S809 airfoil. This
figure shows that the pressure drag value is very low between -5 and 8 degrees. In fact, at
some angles of attack it is zero, values too low to be believed. OSU used pressure taps
located along the airfoil surface in order to measure the pressure and then calculate a drag
coefficient. As can be seen from Figure 2.10, this method does not work well when the
absolute value of the angle of attack is less than approximately 10 degrees. The majority
of the drag force in this region is due to viscous drag, which can not be measured by
pressure taps. Viscous drag forces are parallel té the surface of the airfoil while the
pressure taps are only able to measure pressure which is perpendicular to the airfoil
surface.

In order to get a more accurate value for the drag coefficient in this region, OSU
compiled wake drag values. The wake drag (of a particular airfoil at a steady angle of
attack) is calculated using momentum balance of the upstream and downstream flow
within a control volume (for specific information consult Batchelor, 1988). This method
works well at low angles of attack and low wind speeds. However, this method fails
when there is too much turbulence in the wake of the airfoil. Therefore, the wake drag
values are used for resultant drag coefficient values between -7 and 8 degrees. All other

resultant drag coefficient values are taken from the pressure drag values. Combining the
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wake drag and pressure drag values in this manner results in a drag coefficient which is
more accurate. The values are always positive and the curves are smooth. The resultant

drag coefficients for the NREL S809 are illustrated in Figures 2.10 and 2.11.

Extending the Range of Cm. CL and Cp Values

It is necessary to have lift, drag and pitching moment data for a range of angles of
attack from approximately -5 to 35 degrees in order to compare the models to dynamic
test data. However, the OSU static airfoil table data for the NASA LS(1)-0417 and the
NREL $809 is incomplete for a Reynold’s number (Re) of 1.5x10°%. OSU only specifies
values associated with angles of attack up to approximately 20 degrees. Therefore, it was
necessary to extend this static data to 35 degrees in order for it to be used for DynStall
comparisons. The procedure for doing this is as follows. First, the NACA 4415 data
were examined since it is complete over the necessary angle of attack range for both Re
of 1 million and Re of 1.5 million. Figure 2.12 show the moment coefficient comparison
for these two cases. From this comparison, it is shown that the static Cy values are nearly
identical at high angles of attack.

Next, the NACA 4415 static Cy data are compared to dynamic data at a low
oscillation frequency (both of which are at Re=1.5x10% and high angle of attack range.
This comparison (see Figure 2.13) shows that the dynamic data generally circles (and in
this case the hysterisis is so small that it is virtually non-existent) around the static data.
These comparisons were used as general rules when extending the airfoil data for the
NASA L.S(1)-0417 and the NREL S809 into the higher angle of attacks (for Re of 1.5

million). See Figures 2.14-2.17 for illustrations of the extended data for these airfoils.
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Figure 2.12: NACA 4415 moment coefficient versus angle of attack.
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Figure 2.14: NASA LS(1)-0417 moment coefficient versus angle of attack.
Static data for Re=1.0x10%and Re=1.5x10°. Extended static data for Re=1.5x10°.
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Figure 2.15: NASA LS(1)-0417 moment coefficient versus angle of attack.
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Figure 2.16: NREL S809 moment coefficient versus angle of attack.
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Figure 2.17: NREL S809 moment coefficient versus angle of attack.
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Similar analyses were also used to extend the drag and lift coefficients. Figures
2.18-2.21 illustrate the extensions of these coefficients. It is also useful to compare low
frequency dynamic data at Reynolds number of one million and one and a half million
when extending the lift coefficient data. There is a large amount of hysterisis, even in
low frequency cases, thus making it difficult to predict the static values in this region (see
Figure 2.22). The hysterisis loops of these two conditions are so close that the static C,

data can also be assumed to be virtually identical.

Determining Cha-stall

Other input parameter constants are needed to build an airfoil table for a given
airfoil at a given Reynolds number. See Pierce (1996) for an explanation of some of
these constants. One of the most difficult parameters to define is the value of the normal
force coefficient at stall (Cpgan). This parameter is ambiguous for airfoils that do not
encounter hard stall (such as the NACA 4415 and the NREL S809). This point is
illustrated in Figures 2.23-2.24. These figures show that Cy does not reach its maximum
value and then drop off sharply as it does for the NASA LS(1)-0417 shown in Figure
2.25. Instead, it reaches a maximum Cy value that is very similar to the value for data
points at the previous and next few angle of attacks (i.e. a rather flat Cy peak). When this
situation oceurs, it is best to choose the stall angle (On) at the middle of the relatively
flat section of the curve (as is shown in the following paragraphs). Therefore, the stall
angles of the NACA 4415 and the NREL S809 are 17 and 15 degrees, respectively.

Because of the presence of dynamic stall and hysterisis, the value of Cphstan 1S Dot

the maximum C, value taken from the static table. Instead it is found as illustrated in
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Figure 2.20: NASA LS(1)-0417 lift coefficient versus angle of attack.
Static data for Re=1.0x10°and Re=1.5x105. Extended static data for Re=1.5x10°.
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Figure 2.21: NASA LS(1)-0417 lift coefficient versus angle of attack.
Static data, extended static data and low frequency dynamic data for Re=1.5x10°.
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Figures 2.23, 2.24 and 2.25. The Cyq line is extended until it intersects the Oy line.
From this point, the value of Cj.gay is read from the plot. Chgan is 2.1 for the NACA
4415 and 1.8 for the NREL S809.

Choosing the correct value of Cy.gan is very important. In order to illustrate this
point, the NACA 4415 was analyzed at three different conditions for the case when
o=14+10sinwt, k=0.086 and Re=1.0x10°. Condition #2 uses the aforementioned method
of determining the values of stall angle and Cisan. Condition #1 under predicts and
condition #3 over predicts these numbers. These three conditions are listed in Table 2.1.

Figures 2.26-2.28 graphically show these three conditions (note that the data point
at 26 degrees is a bad point). Notice how drastically different these plots are. Although
they are all nearly identical and very much in agreement with the data as the angle of
attack decreases from its maximum value of 24 degrees to its minimum value of 4
degrees, they are very different from each other as the angles of attack increase.

The condition #1 flow simulation is excellent for the attached flow from 4
degrees until the onset of vortex detachment at 12 degrees. The model predicts that the
vortex builds too early, dissipates too fast and that the vortex reaches the trailing edge of
the airfoil when the angle of attack is 20 degrees. It then sheds off the back of the airfoil
and a secondary vortex builds at 22 degrees and reaches the trailing edge at the maximum
angle of attack, 24 degrees.

Condition #2 does a very good job of predicting the data. The prediction is
excellent from the minimum angle of attack at 4° all the way to the onset of the vortex
contribution at 17 degrees. The model continues to accurately predict the data as the

vortex builds and reaches the trailing edge of the airfoil at 23 degrees. At the maximum
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Figure 2.25: NASA LS(1)-0417 normal force coefficient versus angle of attack.
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Figure 2.26: NACA 4415 moment coefficient versus angle of attack. Simulated using
condition #1 from Table 2.1. a=14+10sinmt, k=0.086, Re=1.0x 108,
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Figure 2.27: NACA 4415 moment coefficient versus angle of attack. Simulated using
condition #2 from Table 2.1. ai=14+10sinwt, k=0.086, Re=1.0x10°.
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Figure 2.28: NACA 4415 moment coefficient versus angle of attack. Simulated using
condition #3 from Table 2.1. o=14+10sinwt, k=0.086, Re=1.0x10°.
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Table 2.1: Oy and Cisean at three test conditions.

Condition number Olstall Ch-stall
1 10 1.5
2 | 17 2.1
3 22 2.7

angle of attack, 24 degrees, the data show a higher nose down pitching moment
coefficient than the model prediction. The model’s prediction of Cy is approximately
0.02 less than the data at this point. Overall, the shape and magnitude of Cy predictions
using condition #2 is excellent.

Condition #3 does well but the vortex contribution does not commence until 22
degrees, which is five degrees later than the data indicates. The magnitude of the

maximum nose down pitching moment is 0.03 less than the data.




TIME CONSTANTS RESULTS

The Methods section described the four components of pitching moment (Cwmr,
Cmq, Cwmr and Cyy) that are summed to form the pitching moment coefficient, Cwm. The
formulas used to calculate Cyr and Cyy require the use of time constants,

There are five time constants associated with the Beddoes-Leishman dynamic
stall model. They are listed in Table 3.1 along with their recommended values using
different reference sources. Leishman and Beddoes (1986) and Leishman (1989)
recommend time constants found empirically when testing the NACA 0012 at Mach
numbers of 0.3 and 0.4 respectively. However, they recommend altering the time
constants to identify those that best fit the model. For example, Pierce (1996) borrowed
from these sources in order to identify time constants that accurately predicted dynamic

lift and drag for the same three airfoils tested in this thesis.

Table 3.1: Time constants.

Time constant | Leishman & Beddoes Leishman Pierce Minnema
(1986) (1989) (1996) (1998)
T, 1.7 2.0 1.7 1.7
Te 3.0 e 3.0 3.0
i - - - 0.3
Ty 6.0 6.0 6.0 6.0
T 7.0 11.0 11.0 11.0
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In this research (referred to as Minnema, 1998 in Table 3.1) several different time
constant combinations were tested to predict pitching moment coefficients. When a
variety of data sets which incorporate different airfoils, reduced frequencies and
Reynolds numblers were evaluated it was concluded that the combination used provided
accurate predictions. Note that the time constant, T, was not used prior to this research.
The following paragraphs discuss how the time constants were varied and their

subsequent results.

Tpand T

T, is a time constant that is used to get the deficiency function Dy, (equation 14
from Leishman and Beddoes, 1989). Dy, subsequently helps determine «’. Ty is an

empirically derived time constant that is used to determine the deficiency function Dg.
Dy, is a term in equation 11 (which determines the effective separation point,

£7). Altering these time constant values within the ranges in Table 3.1 had very little

effect on the outcome of the Cy values.

Ty
T, the time constant used to find Dy, and a” (see equation 13), was developed
for this research project. It is needed to locate Cyy from a “look-up table.” To determine
T, different dynamic cases were run in the computer code DynStall and Cy outputs were
compared to wind tunnel test data. DynStall is described in the Two-Dimensional Wind

Tunnel Data Simulation Results section. A T, value of 0.3 gave the closest agreement
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with the Ohio State University wind tunnel test data. Many different values (including
3.0, 1.5, 0.3 and 0.003) were tested before 0.3 was decided upon.

Figures 3.1 and 3.2 show an extreme example of how the shape of the Cy curve
changed when a T, value of 3.0 (Figure 3.1) was used compared to using 0.3 (Figure
3.2). These two plots are for the NACA 4415 airfoil at a reduced frequency, k, of 0.096
(the highest k value of all the dynamic wind tunnel data studied in this research).

Under most of the situations tested, changing Tq, from 3.0 to 1.5 or 0.3 made only
a slight difference. Figures 3.3 and 3.4 are typical examples. Both are for the NASA
LS(1)-0417 airfoil with k=0.077. In Figure 3.3 the Cy curves are virtually identical for
3.0, 1.5 and 0.3 throughout the test cycle except near the end of the cycle when the flow
starts to reattach. This is the range of angles of attack starting at approximately 8 degrees
and extending back (as the angle of attack decreases) to the smallest angle of attack value
of this test (about -4 degrees). The plots are virtually identical as the airfoil increases in
angle of attack from -4 degrees to its greatest value of 18 degrees. The plots continue to
be the same as the angle of attack decreases until the airfoil is once again at
approximately 8 degrees.

Figure 3.4 illustrates that a T value of 0.3 produces identical results to a value of
0.003. This implies that the deficiency function (see equation 13), Dy, is basically zero
in both cases. In other words, &” = . However, (as shown in Figures 3.1 and 3.2) Ty,
has much more of an effect on Dg, and Cy at higher reduced frequencies.

Pierce (1996) concluded that the Combined Experiment Rotor (CER) wind
turbine operates in environments below reduced frequencies of 0.1 the majority of the

time (not including the times when a blade is passing through the tower’s shadow). Thus,
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a T, of 0.3 should give reasonable predicted results of Cy values for this wind turbine
and others operating with k less than 0.1. However, if analyzing data that are at a higher

reduced frequency, T, may have to be adjusted in order to reflect this change.

Ty

T, is the time constant that controls the strength of the vortex. Figure 3.5
illustrates the effect of increasing the value of T, from its standard value of 6 to 9 and 12.
The strength of the vortex changes considerably from a minimum of ~0.33 (with T, = 6)
to —0.44 (with Ty = 12). For this particular test condition, T, = 12 gives the closest
representation of the test data. However, other test cases show 6 to be better than 12.
Figure 3.5 clearly illustrates that increasing T increases the effect of the vortex. This, in
turn, increases the nose down pitching moment coefficient (i.e., Cy becomes more

negative) when the vortex is at or near the trailing edge of the airfoil.

Tw

T, is the nondimensional time of transit for the vortex moving across the airfoil
surface. Ty is equal to a constant value of 11.0. Figure 3.6 illustrates the effect that this
time constant has on the DynStall prediction of Cy. When the Ty value is equal to 5, the
vortex moves quickly across the airfoil. It builds quickly, has the same magnitude (as the
11 and 15 simulations), and dissipates quickly. As the value of T,; becomes higher, the
vortex moves more slowly and has a more lasting effect. Figure 3.6 shows that when Ty
is 5, the vortex detaches at 19 degrees, the maximum nose down pitching moment
coefficient is at 23 degrees and the vortex effect is gone at a 25 degree angle of attack.

On the other hand, when Ty is equal to 13, the vortex detaches at 20 degrees, the
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maximum nose down pitching moment coefficient is at 28 degrees and the vortex effect
remains until a 30 degree angle of attack is reached. In fact, in this case it would have

remained longer if the airfoil had reached a higher of attack during the test.



TWO-DIMENSIONAL WIND TUNNEL DATA

SIMULATION RESULTS

This chapter compares pitching moment coefficients from two-dimensional (2-D)
dynamic wind tunnel data (obtained from Gregorek and Reuss, 1994) to Cy’s from the
DynStall computer program. DynStall (see Appendix A) utilizes the AeroDyn
subroutines and requires static airfoil data as well as a time history of wind velocity, V
and angle of attack, o, values (identical to the dynamic wind tunnel data) as inputs.
Comparisons were conducted on three airfoils at three reduced frequencies operating
under 3 angle of attack ranges and two Reynolds numbers for a total of 54 comparisons.

OSU (Gregorek and Reuss, 1994) conducted wind tunnel tests on three different
airfoils that are commonly used for wind turbine applications: NACA 4415, NASA
L.S(1)-0417 and the NREL S809. Figure 4.1 illustrates the general shapes of these
airfoils. The tests were done at static conditions over a range of angles of attack from -20
to 40 degrees (except when noted otherwise) and under dynamic conditions with reduced
frequencies from approximately 0.02 to 0.10.

The airfoil analyses that follow pertain to smooth airfoils operating at a Reynolds
number of approximately one million. Comparisons at Reynolds numbers of 1.5 million
are in Appendix C. All comparisons are calculated as outlined in the Methods section

and incorporate the time constants listed under Minnema in Table 3.1. In order to
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Figure 4.1: Airfoils used for unsteady aerodynamic Cy comparisons, from Pierce (1996).
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facilitate comparisons, all plots use a Cy scale from —0.25 to 0.00 or —0.50 to 0.00 (unless

a wider range is necessary). All plots use angle of attack scales from -5 to 35 degrees.

NACA 4415 Airfoil

Figures 4.2-4.10 compare the predicted and measured Cy for the NACA 4415
airfoil. Three angle of attack ranges were analyzed: 8+3.5sinwt, 14+10sinot and
20+10sinwt degrees. Each was analyzed at three different reduced frequencies. These
reduced frequencies were approximately 0.03, 0.06 and 0.09. Therefore, there are a total
of nine data sets that are compared to model predictions.

The following comment made by Pierce (1996) with respect to simulating the lift
and drag coefficients also holds true for the mome.nt coefficient: “Multiple lines occur in
the predictions since the measured angle of attack from the data were used as input to the
Beddoes subroutines.” These subroutines, written in FORTRAN, are part of the DynStall
program in Appendix A. “The measured angle of attack does not follow an exact sine
wave, and the measurements are somewhat sparse resulting in the multiple prediction
lines.” This phenomenon is illustrated later in this section for the case of a=14+10sinmt
at k=0.086.

For the cases with a mean angle of attack of 8 degrees (Figures 4.2-4.4), both the
magnitudes and shapes of the simulated curves accurately represent the data. The angle
of attack does not get large enough for a vortex to form during any of these simulations.
Nearly the entire dynamic value of Cy is due to the circulatory and non-circulatory
components (i.e., Cur). The case of the reduced frequency being 0.089 (Figure 4.4) is the

poorest representation of the three cases. It underpredicts the nose down pitching
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Figure 4.2: NACA 4415 moment coefficient versus angle of attack.
0=8+3.5sinmt, k=0.029, Re=1.0x10°.
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Figure 4.3: NACA 4415 moment coefficient versus angle of attack.
0=8+3.5sinmt, k=0.059, Re=1.0x10°.

54



55

0.00

-0.05

-0.10

-0.15

-0.20 = Simulated
4 Data

-0.25

-5 0 5 10 15 20 25 30 35
Angle of Attack (deg)

Figure 4.4: NACA 4415 moment coefficient versus angle of attack.
0=8+3.5sinwt, k=0.089, Re=1.0x10°.
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Figure 4.5: NACA 4415 moment coefficient versus angle of attack.
o=14+10sinwt, k=0.029, Re=1.0x10°.
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Figure 4.6: NACA 4415 moment coefficient versus angle of attack.
o=14+10sinmt, k=0.056, Re=1.0x10°.
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Figure 4.7: NACA 4415 moment coefficient versus angle of attack.
o=14+10sinmt, k=0.086, Re=1.0x10°.



0.00
-0.05
0.10
-0.15
-0.20

f£-025
-0.30
-0.35
-0.40
045
-0.50

Al
\
- Simulated
4 Data
—
-5 25 30

0 5 10 15 20

Angle of Attack (deg)

35

Figure 4.8: NACA 4415 moment coefficient versus angle of attack.
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Figure 4.9: NACA 4415 moment coefficient versus angle of attack.
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moment by as much as 0.03. Note that there is a wayward data point on Figure 4.3. This
is likely due to an angle of attack instrumentation error that occurred while the data were
recorded.

When the mean angle of attack is increased to 14 degrees and the amplitude
increased to 10 degrees, the vortex begins to influence Cy.. Figure 4.5 represents the
case where k=0.029. The simulation accurately represents the data throughout the cycle
(except for the wayward point at 27 degrees). The simulation bisects the jittery data as
the angle of attack increases from 4 degrees up to the point were the first vortex detaches
at 16 degrees. The simulation approximates the static data until a weak secondary vortex
develops at 22 degrees and is shed at the maximum angle of attack, 24 degrees. As the
airfoil pitches back to its minimum angle of attack, the model underpredicts the pitching
moment coefficient until the pitch is 14 degrees. From this point back to the minimum
value of 4 degrees the simulation agrees well with the data. The simulation predicts the
maximum and minimum Cy; values very closely. It is difficult in this case, and in some
of the cases that follow, to know how accurate the simulation is because the data are
scattered and inconsistent.

Figure 4.6 predicts all events from 4 degrees up to the onset of the vortex
contribution at 16 degrees and to the point were the vortex reaches the trailing edge of the
airfoil at 22 degrees. The simulation then produces a fast secondary vortex that starts at
23 degrees and ends at the maximum angle of attack, 24 degrees. It is difficult to
determine how the data are responding at these high angles of attack since it is not

consistent with each cycle.
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Figure 4.7 has one vortex contributing to the pitching moment coefficient. It
begins to build at 16 degrees, reaches the trailing edge at 22 degrees and is shed as the
airfoil begins to reverse its angle of attack at 24 degrees. The simulation is especially
jittery in Figure 4.7. As mentioned earlier, this is because the angle of attack does not
follow an exact sine wave over time.

Figure 4.11 illustrates the angle of attack versus time history for this case as well
as for the case of a perfect sine wave. It is evident from this figure that the data are
erratic and that there is also a wayward data point at 0.5 seconds and 26 degrees. Of the
four components that are summed to equal Cy, Cmr is most sensitive to unsteady sine
wave input. Figure 4.12 illustrates this effect by comparing Cyy values when using the
data input versus the sinusoidal input. Figure 4.13 shows the simulated Cy curve when
using the data input versus the sinusoidal input. The sinusoidal input is smooth and
repeats for each of the three cycles that are simulated.

Figures 4.8 through 4.10 are for the case of a mean angle of attack of 20 degrees
and 10 degrees of oscillation. Although the data are jittery for these three cases, the
simulations represent them well. Figure 4.8 has a primary vortex forming at 17 degrees,
reaching the trailing edge at 20 degrees and dislsolving at 22 degrees. A secondary vortex
commences at 23 degrees, reaches the trailing edge at 26 degrees and is fully separated at
27 degrees. The Cy values then return to the separated flow values (which are close to
the static values) until the maximum angle of attack is reached at 30 degrees. They
continue to be at the separated flow values all the way back to the minimum angle of

attack of 10 degrees.
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Figure 4.11: NACA 4415 angle of attack versus time.
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Figure 4.9 also contains contributions from two vortices. The primary vortex
begins to build at 17 degrees, reaches the trailing edge at 23 degrees and is fully
separated at 28 degrees. The secondary vortex commences at 25 degrees, reaches the
trailing edge at 27 degrees and is gone at 30 degrees. Thus, both vortices contribute to
the pitching moment coefficient when the angle of attack is between 25 degrees and 28
degrees. The primary vortex is decaying while the secondary vortex is building.

Figure 4.10 is similar to the previous two figures except it contains only one
vortex. This vortex is stronger and stays on the airfoil over a greater range of angles of
attack. The vortex contribution begins at 17 degrees, is a maximum at 26 degrees and is
fully gone at 30 degrees. This simulation does not represent the data as accurately as the
previous two figures. However, the data in Figure 4.10 do not repeat well over the three

cycles, especially in the range of angle of attacks from 25 to 30 degrees.

NASA LS(1)-0417 Airfoil

Figures 4.14 through 4.22 compare predicted to measured values of Cy for the
NASA LS(1)-0417 airfoil during dynamic conditions. The comparisons were made at
three different mean angles of attack: 8 degrees, 14 degrees and 20 degrees with an
amplitude of oscillation of 10 degrees. Each of the three aforementioned oscillatory
cases was analyzed at three different reduced frequencies: 0.03, 0.06 and 0.09, resulting
in nine different comparisons.

For a mean angle of attack of 8 degrees the results are impressive. The simulated
Cy values are mainly composed of the separated flow values except at the higher angles
of attack where the vortex contributes greatly. Figures 4.14 and 4.15 represent the data at

reduced frequencies of 0.026 and 0.052 respectively. As the angle of attack of the airfoil
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Figure 4.14: NASA LS(1)-0417 moment coefficient versus angle of attack.
0=8+10sinwt, k=0.026, Re=1.0x10°.
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Figure 4.15: NASA LS(1)-0417 moment coefficient versus angle of attack.
0=8+10sinmt, k=0.052, Re=1.0x10°.
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Figure 4.16: NASA LS(1)-0417 moment coefficient versus angle of attack.
0=8+10sinwt, k=0.082, Re=1.0x10°.
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Figure 4.17: NASA LS(1)-0417 moment coefficient versus angle of attack.
oi=14+10sinmt, k=0.026, Re=1.0x10°,



0.00
-0.05
-0.10
0.15
-0.20

F-0.25
-0.30
035

-0.40 T = Simulated
-0.45 +— & Data
050 L

-5 0 5 10 15 20 25 30 35
Angle of Attack (deg)

Figure 4.18: NASA LS(1)-0417 moment coefficient versus angle of attack.
o=14+10sinwt, k=0.052, Re=1.0x10°.
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Figure 4.19: NASA LS(1)-0417 moment coefficient versus angle of attack.
o=14+10sinwt, k=0.079, Re=1.0x10°.
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Figure 4.20: NASA LS(1)-0417 moment coefficient versus angle of attack.
0=20+10sinwt, k=0.027, Re=1.0x10°.
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Figure 4.21: NASA LS(1)-0417 moment coefficient versus angle of attack.
0=20+10sinwt, k=0.055, Re=1.0x10°.
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Figure 4.22: NASA LS(1)-0417 moment coefficient versus angle of attack.
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increases, the vortex begins to build at the leading edge when the maximum angle of
attack (18 degrees) is reached. As the airfoil begins to move to a lower angle of attack,
the vortex suddenly reaches the trailing edge and dissipates quickly. Directly after the
effect of the vortex has disappeared (from approximately 16 degrees to 13 degrees), the
model slightly overpredicts the nose down pitching moment. Figure 4.16 also does an
excellent job of simulating the data, but also overpredicts the nose down Cy immediately
after the effects of the vortex have passed (from 12 degrees to 7 degrees).

Although the simulations at a mean angle of attack of 14 degrees do not simulate
the data as well as those previously discussed, they are still fairly good. The simulated
prediction in Figure 4.17 does an excellent job of predicting the data from 4 degrees until
the primary vortex reaches the trailing edge of the airfoil at 18 degrees. Because the data
points are very scattered at angles of attack greater than 20 degrees, it is difficult to
determine how accurately the simulation is at these high angle of attacks. The simulation
does duplicate the data well as the angle of attack decreases from its maximum value of
24 degrees to its minimum value of 4 degrees. As the reduced frequency is increased to
0.052 and 0.079 in Figures 4.18 and 4.19, the data become more repeatable. The
simulations for these two cases are very similar. They both accurately represent the data
except they underpredict the maximum magnitude of the vortex. Figure 4.18 predicts a
maximum nose down Cy of -0.23 whereas the data indicate -0.28. Figure 4.19 predicts a
maximum nose down Cy of -0.30 whereas the data indicate -0.39.

Figures 4.20 through 4.22 represent cases for a mean angle of attack is 20
degrees. When the reduced frequency is 0.027 (Figure 4.20), the data underpredicts the

nose down pitching moment from the minimum angle of attack at 9 degrees until the
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primary vortex begins to detach from the airfoil at 17 degrees. The simulation predicts
the beginning stages of the vortex contribution well. However, the simulation shows the
primary vortex fully separating at 20 degrees and two very minor vortices (each having
contributions of less than 0.02) occurring before reaching the maximum angle of attack at
30 degrees. The data, on the other hand, show values approximately 0.05 less than those
of the simulation as the airfoil pitches from 20 to 30 degrees. When the reduced
frequency is increased to 0.055 (Figure 4.21), the model performs well except it
underpredicts the magnitude of the primary vortex contribution after it reaches the
trailing edge of the airfoil by 0.05. The simulation also slightly overpredicts the data as
the angle of attack decreases from 20 degrees tol3 degrees. Figure 4.22 is similar to
Figure 4.21 in that it also overpredicts the data as the angle of attack decreases. Figure
4.22 also underpredicts the nose down pitching moment. In this case, the maximum nose
down Cy is off by 0.12. Because of this large discrepancy at the vortex peak, it was
believed the simulation needed a finer time step in order to more closely represent the
large contribution of the vortex. Hence, angle of attack versus time input information for
this simulation was matched to a sine wave and the frequency of data points was
approximately multiplied by four. This finer time step resulted in four times as many
data points over the same time period. This resulted in nearly an identical simulation as
is illustrated in Figure 4.23. Therefore, the finer time step had a minimal effect on the
simulation and is does not account for underpredicting the strength of the vortex

contribution at the trailing edge of the airfoil.
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NREL S809 Airfoil

Figures 4.24 through 4.32 compare predicted to measured values of Cy for the
NREL $809 airfoil during dynamic conditions. The test conditions were similar to those
for the NASA LS(1)-0417: comparisons were made at three different mean angles of
attack: 8 degrees, 14 degrees and 20 degrees with an amplitude of oscillation of 10
degrees. Each of the three aforementioned oscillatory cases was analyzed at three
different reduced frequencies: 0.03, 0.06 and 0.09, resulting in nine different
comparisons. |

For a mean angle of attack of 8 degrees, the results are fair. Figure 4.24
represents the case with the lowest reduced frequency, k = 0.026. This plot shows very
little dynamic behavior and represents the data well except it underpredicts the nose
down Cy prior to the vortex contribution by as much as 0.02. In addition, the simulation
predicts a primary vortex (which peaks at 17 degrees) where the data show no vortex.
For the higher reduced frequency cases (Figures 4.25 and 4.26), the simulations
misrepresent the data in similar ways. They both do very well as the angle of attack is
increased from -2 to 10 degrees. At 10 degrees, there appears to be a vortex contribution
that reaches the trailing edge at 15 degrees. However, both the simulations show no
vortex contribution until 16 degrees. The simulation also predicts that the vortex effect is
stronger (by 0.03 to 0.05) than the data indicate. As the airfoil decreases in angle of
attack from its maximum value of 18 degrees, the simulations are very accurate until
about 15 degrees where both simulations overpredict the nose down Cy by as much as
0.03. The simulations become more accurate again as the airfoil pitches from 9 degrees

back to the minimum angle of -3 degrees.
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Figure 4.24: NREL S809 moment coefficient versus angle of attack.
o=8+10sinmt, k=0.026, Re=1.0x10°.
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Figure 4.25: NREL S809 moment coefficient versus angle of attack.
0:=8+10sinmt, k=0.053, Re=1.0x10°.
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Figure 4.26: NREL S809 moment coefficient versus angle of attack.
o=8+10sinwt, k=0.077, Re=1.0x10¢.
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Figure 4.27: NREL S809 moment coefficient versus angle of attack.
oi=14+10sinwt, k=0.026, Re=1.0x10°.
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Figure 4.28: NREL S809 moment coefficient versus angle of attack.
o=14+10sinwt, k=0.053, Re=1.0x10°.
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Figure 4.29: NREL S809 moment coefficient versus angle of attack.
oi=14+10sinot, k=0.080, Re=1.0x10°.
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Figure 4.30: NREL S809 moment coefficient versus angle of attack.
0=20+10sinwt, k=0.025, Re=1.0x10°.
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Figure 4.31: NREL S809 moment coefficient versus angle of attack.
0=20+10sinwt, k=0.051, Re=1.0x 10°.
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Figures 4.27 through 4.29 represent the cases where the mean angle of attack is 14
degrees. Figure 4.27 (with k = 0.026) does an excellent job of simulating the data except
it is off by a maximum of 0.12 at the maximum angle of attack, 24 degrees. At this
angle, the data show a large vortex contribution but the simulation shows none. Figure
4.28 begins well as the pitch moves from 3 degrees to 100 degrees. Beginning at 10
degrees, the data appear to display a small primary vortex that reaches the trailing edge at
15 degrees. The data display a secondary vortex that begins to build at 16 degrees,
reaches the trailing edge of the airfoil at 20 degrees and is fully separated at 23 degrees.
The simulation predicts this vortex very well. However, the simulation misses badly at
24 degrees where the data display a very large vortex contribution of 0.015, which
separates quickly. Figure 4.29 is the best simulation for this mean angle of attack. The
simulation is very good as the airfoil pitches from 3 degrees to 12 degrees. At 12
degrees, the data reveal vortex effects. However, the model does not display vortex
effects until 17 degrees. This discrepancy causes the model to underpredict the nose
down Cy by up to 0.05 in this region. From 20 degrees until the maximum angle of 24
degrees, the simulation matches the data very well (except for one outlying data point at
24 degrees). The simulation is good as the angle of attack decreases from 24 degrees all
the way back to the minimum angle of 3 degrees.

Figures 4.30 through 4.32 represent cases where the mean angle of attack is 20
degrees. For the two lowest values of reduced frequencies (0.025 and 0.051) the
simulations err in a similar fashion. They both predict the pitch angle for vortex
detachment well but underpredict the magnitude and time duration of the major vortex

contribution. Figure 4.30 predicts the vortex reaching the trailing edge three degrees
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carlier, with a Cy 0.07 less and full vortex separation 5 degrees earlier than the data
indicate. Figure 4.31 predicts the vortex reaching the trailing edge 4 degrees earlier, with
a Cy 0.13 less and full vortex separation 5 degrees earlier than the data indicate. One
reason for this discrepancy could be that the data are experiencing two very closely
spaced vortices in these regions while the model is only predicting the first (lower forced)
of these vortices. When the reduced frequency is 0.078 (Figure 4.32) the prediction
represents the data better than in the two previous cases. The shape of the curve is off a
bit but the maximum and minimum Cy values are almost perfect. The data appear to
have two closely spaced vortices which (when combined) are nearly identical in
magnitude to the single vortex predicted by the model. The simulation, however, fully
separates at 25 degrees but the data continue to have vortex contribution until 28 degrees.
The simulation is good as the airfoil pitches from 28 degrees back to its minimum value

of 8 degrees.



COMBINED EXPERIMENT ROTOR DATA

COMPARISON RESULTS

This section compares YawDyn Cy output to Cy test data from the Combined
Experiment Rotor (CER) wind turbine.

Several data sets were collected for the CER, which was tested at the National
Wind Technology Center (NWTC) in Boulder, CO. Each data set is 600 seconds long
and contains hundreds of channels of information recorded at a sample rate of 520 Hertz.
These data sets were then zero phase distortion low-pass filtered at 13 Hz and decimated
by a factor of 17. The resulting files have 30.6 (520/17=30.6) data points per second and
no frequencies higher than 13 Hz. This new data file is more manageable and the high
frequency “noise” is filtered out. The Cy, angle of attack data (which were both recorded
at five different stations along the span of the blade) and wind data were separated from
the larger data set. The wind data were used as inputs into YawDyn models of the CER
turbine. The output of the YawDyn model contains pitching moment coefficient
predictions at span-wise blade locations that correspond with those of the data set. The
intent of the model is to accurately predict the pitching moment coefficients.

Three data sets with different mean hub height wind speeds were studied for this
research. Data sets 35, 74 and 24 have mean hub height wind speeds of 7.0, 9.0 and 15.1
m/s respectively. The following discussion uses examples from data set 74 (which

operates in fixed yaw). Data sets 35 and 24 compare very similarly with their respective



81

YawDyn simulations. A final simulation comparison from data set 24 is illustrated at the
end of this chapter.

Figures 5.1 and 5.2 show angle of attack vs. pitching moment for data set 74 at
the 50% and 80% blade stations, respectively, and their corresponding YawDyn
simulation. The Beddoes and Leishman model, which is incorporated into this work,
predicts Cy fairly well except for the excess scatter in the YawDyn prediction. (Note that
the majority of the model’s values are in the black region that surrounds the static values.
This is also the case for other Cy vs. o plots in this chapter.) When analyzing the
pitching moment coefficient vs. time plots (see Figures 5.3 and 5.4) it is obvious that the
Cy spikes occur once per revolution. This effect is due to the blade passing through the
tower’s shadow. The tower shadow is defined in the YawDyn Users Guide (Hansen,
1997). For this model of the CER the tower shadow half-width is 0.4 meters and the
deficiency is 25%.

Another observation to note from Figures 5.3 and 5.4 is that the model's Cy
spikes are much larger than those in the experimental data. (Also, note that the small
spikes in the data are approximately 180 degrees out of phase with the YawDyn
predictions. This is a result of the model operating at a perfectly constant speed of 71.9
revolutions per minute while the actual CER runs at a nearly constant rpm that fluctuates
between approximately 71.7 and 72.3 rpm. Therefore, the model and the test data are
virtually always out of sync.) One possible explanation is that the angle of attack data
that comes out of YawDyn, and is used to calculate Cy, is not accurate. However, this is

not the case, the angle of attack predictions are reasonable.
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Figure 5.1: Pitching moment coefficient vs. angle of attack at the 50% blade station for
the CER data set 74, YawDyn model and static.
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Figure 5.2: Pitching moment coefficient vs. angle of attack at the 80% blade station for
the CER data set 74, the YawDyn model and static.
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Figure 5.3: Pitching moment coefficient vs. time at the 50% blade station for the CER

data set 74 and the YawDyn model.
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Figure 5.4: Pitching moment coefficient vs. time at the 80% blade station for the CER

data set 74 and the YawDyn model.
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Figures 5.5 and 5.6 show data and YawDyn model angle of attack vs. time. These
figures illustrate the consistency of the tower shadow in the model and its inconsistency
in the data. On average, the model reasonably predicts the angle of attack for these
situations and others that were analyzed. In fact, when the angle of attack data are used
as input into the DynStall program (which was used in a similar way to compare the
models to the OSU wind tunnel data) the Cy spikes were still greater in magnitude than
those from the test data. This indicates that the model used to calculate Cy does not give
satisfactory results when the blade passes through the tower’s shadow.

The tower shadow effectively reduces the wind speed by 25% while the rotor
continues to spin at a nearly constant 72 +/- 0.3 rpm. Thus, the angle of attack at any
given blade location while in the shadow is significantly different than it is outside of the
tower’s shadow. This is evident from Figures 5.5, 5.6 and Figure 5.7. Figure 5.7
illustrates how local wind speed (which equals the wind speed multiplied by one minus

the induction factor) and rotational speed, R, combine to form a resultant velocity and

angle of attack, o. Since the angle of attack changes so quickly and radically in this
region, the values of Cpy and Cpmq (which come out of the YawDyn model) are greatly
magnified due to encountering the tower shadow. (The Methods section of this document
explains the dependency that the change in the angle of incidence and the change in
pitching rate have on Cyy and Cyyg, respectively.)

Figure 5.8 is a magnified view of the 50% blade location and illustrates how the
four components of pitching moment coefficient (Cyi , Cmq , Cumr » Cmv) respond when

encountering the tower’s shadow. According to the model, Cyn exhibits a very large
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Figure 5.5: Angle of attack vs. time at the 50% blade station for the CER data set
74 and the YawDyn model.
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Figure 5.6: Angle of attack vs. time at the 80% blade station for the CER data set 74 and
the YawDyn model.
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spike. Co is also affected but to a lesser extent. Cyr is lightly disturbed and since there
is no vortex shedding in this angle of attack range, Cyy remains constant at zero.

Tyler and Leishman (1991) refer to very fast changes in angle of attack that occur
as a result of a sharp increase (or decrease) in the relative wind speed as ‘plunge’. They
say that modeling plunge is different than modeling ‘pitch’. Pitch occurs as an airfoil
oscillates (about its spanwise axis) through air that flows at a fairly constant wind speed.
The phenomenon of pitch is emulated by the OSU wind tunnel tests and is modeled in the
research described in this thesis. It is likely that plunge is occurring as the down wind
blade enters and exits the tower’s shadow. This may explain why the current model is
not accurate in this region.

Devising a model that accurately predicts the phenomenon of plunge is beyond
the scope of this research. However, in order to increase the accuracy of the current
model, a saturation function was applied to the reduced time rate of change of angle of
attack, PRP. This lessens the effects of the tower shadow on the pitching moment
coefficient by reducing the magnitude of the spikes exhibited in Cyr and Cyo. PRP is
defined as:

PRP = (do/dt) ¢/V (15)
Figure 5.9 illustrates how the saturation function limits the adjusted value of PRP
(referred to as APRP) as PRP exceeds the absolute value of 0.03. The value of APRP is
used to calculate an adjusted value of (do/dt), (do/dt)s such that:

(dovdt)s = APRP (V/c) (16)

(dovdt) 4 is used instead of (do/dt) in the equations needed to calculate Cyiy and Cuq.
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Flgure 5.8 The reaction of the four components of the pitching moment coefficient when

encountering the tower’s shadow.
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A value of 0.03 was chosen as the point where the saturation function is engaged
because this value has virtually no effect on the model for predicting OSU wind tunnel
test data and moreover, it predicts the CER test data with greater accuracy.

Figure 5.10 illustrates the reduction of the Cyy and Cyq spikes as a result of the
introduction of the saturation function. Figures 5.11 and 5.12 show similar taming of the
pitching moment coefficient, Cy. The Cy spikes in this figure are up to 0.1 less than the
model without the saturation function. Figure 5.13 and 5.14 show the same data as
Figure 5.1 and 5.2 and are now being compared to a YawDyn model that employs the
aforementioned saturation function.

Figure 5.15 also illustrates that the model predicts the data accurately for data set

24 (which has a mean wind speed of 15.1 m/s and operates in free yaw).

Conclusion

While the model prediction is much better than it was previously, the model still
over predicts the scatter of the Cy in most cases. This leads to greater pitching moment
coefficients than the data suggests. However, a conservative model is adequate for this
research since the purpose is to investigate if pitching moments are significant enough to
effect parameters such as angle of attack, lift, drag, power output, and flap moments. If a
conservative model (such as the one presented here) has a negligible effect on these
parameters, then it can be postulated that pitching moments are not needed in wind
turbine models. On the other hand, if pitching moments are shown to be significant in
predicting any of the aforementioned parameters then future research can be devoted to

devising a more accurate model.
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Figure 5.11: Pitching moment coefficient vs. time at the 50% blade station without and
with the saturation function.
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Figure 5.13: Pitching moment coefficient vs. angle of attack at the 50% blade station for
the CER data set 74, YawDyn model (with saturation function) and static.
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the CER data set 74, YawDyn model (with saturation function) and static.



CONCLUSION

The goals of this research have been accomplished. Dynamic pitching moments
were added to the AeroDyn subroutines, which are part of the ADAMS, YawDyn and
DynStall computer models. The AeroDyn subroutines calculate aerodynamic forces that
are present on wind turbine blades. The AeroDyn subroutines, which incorporate the
Beddoes-Leishman model for unsteady aerodynamics and dynamic stall, were able to
successfully predict dynamic pitching moment coefficient values for conditions that
occur with wind turbine blades. However, in order to increase the accuracy of the model,
some changes were made to the Beddoes-Leishman methods including the following:

1. The static separation point, f, was calculated from equation 9 instead of the
empirical equation used by Beddoes and Leishman. This allows for
representation of separation point values throughout the entire 360 degree
range of angles of attack.

2. An approximate value of the dynamic angle of attack, «”, was calculated
from equation 13. It was then used to retrieve the corresponding Cue from a
“look-up table.” Beddoes and Leishman recommend using a polynomial
relationship (which is a function of f” and Cy). However, this method only
works for a small range of angles of attack.

3. A saturation function was added to the model to control the values of Cy, and

Cwmo When the blades were encountering a sudden change in pitch and pitch



rate (such as in the vicinity of the tower’s shadow). Without the saturation
function, Cy would display large spikes under this circumstance.

The resulting model was able to predict dynamic Cy values recorded during 2-D wind
tunnel experiments at OSU for three different airfoils at Reynold’s numbers of 1.0 and
1.5 million at reduced frequencies up to 0.09. The model also predicted Cy data that
were gathered during field tests on the CER wind turbine at NREL’s NWTC.

Finally, an ADAMS model of the CER was run with a pitching hinge at each of the
blade roots. The stiffness of the hinge was varied in order to see how sensitive it was to
the blade’s pitching motion. Results indicated that in light (e.g., 12m/s), steady winds the
pitching natural frequency of the blades needs to be very soft (near 1 p) in order for the
pitching moment to play a significant role in causing torsional blade motion. However,
as the wind becomes stronger (e.g., 20m/s average wind speed) and turbulent, a blade
with a 7.5 p pitching frequency is noticeably influenced by the inclusion of the pitching
moment data. Pitching moments affect the angle of attack, pitch angle, power and root
flap moment of a blade. Therefore, it is important to consider the contributions of
pitching moments when similar conditions exist. It is also important (even with stiff
blades) to include pitching moments in the aerodynamic calculations if the blade has a
sloppy pitch control system, therefore allowing the blade to easily pitch at its root. When
this situation occurs, even a small pitching moment can pitch the blade a significant

amount.



Topics for Future Work

More work can be done on the pitching moment calculations to increase their
accuracy and reliability, including the following:

1. Test more airfoils.

2. Revisit the time constant values for a larger number of airfoils and 2-D test data at
higher reduced frequencies.

3. Replace the saturation function with the ability of the model to incorporate the
effects of plunge.

4. When wind tunnel data on the CER wind turbine becomes available, compare
simulations to this data.

This research would add further to the reliability of the dynamic pitching moment

calculation.
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