
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy
Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Contract No. DE-AC36-08GO28308

NWTC Programmer's Handbook:
A Guide for Software
Development Within the FAST
Computer-Aided Engineering
Tool
B.J. Jonkman, J. Michalakes, J.M. Jonkman,
M.L. Buhl, Jr., A. Platt, and M.A. Sprague

August 24, 2012
Draft Version
for External Review
Updated March 26, 2013

Technical Report
NREL/TP-xxxx-xxxxx
December 2012

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy
Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

National Renewable Energy Laboratory
1617 Cole Boulevard
Golden, Colorado 80401
303-275-3000 • www.nrel.gov

Contract No. DE-AC36-08GO28308

NWTC Programmer's
Handbook: A Guide for
Software Development Within
the FAST Computer-Aided
Engineering Tool
B.J. Jonkman, J. Michalakes, J.M. Jonkman,
M.L. Buhl, Jr., A. Platt, and M.A. Sprague

Prepared under Task Nos. WE110336 and WE115070

August 24, 2012
Draft Version
for External Review
Updated March 26, 2013

Technical Report
NREL/TP-xxxx-xxxxx
December 2012

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy
and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/help/ordermethods.aspx

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721

 Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

http://www.osti.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.aspx

iii

List of Abbreviations

CAE Computer-aided engineering
DOE Department of Energy
GPL General Public License
I/O Input/output
IDE Integrated development environment
IVF Intel® Visual Fortran
MSL Mean sea level
NREL National Renewable Energy Laboratory
NWTC National Wind Technology Center
SI International System of Units
SVN Subversion
TOT Top of trunk

Nomenclature

Δt Discrete time increment
n Discrete-step counter
p System parameters
t Time
u System inputs
U Input-output transformation functions
x Continuous states
X Continuous-state functions
Xi, Yi, Zi Axes of the inertial frame
xd Discrete states
Xd Discrete-state functions

y System outputs

Y System-output functions
z Constraint states
Z Constraint-state functions

iv

Table of Contents

List of Abbreviations ... iii
Nomenclature ... iii
Table of Contents ... iv

List of Figures ... vii
List of Tables ... viii
Introduction ... 1

Overview ... 1

Definitions... 2

Copyright and Licensing ... 5

Version Naming .. 5

Version Control ... 5

Documentation .. 6

Commenting the Code .. 6

Change Logs ... 6

Subversion Commit Logs ... 7

User’s Guides and Theory Manuals .. 7

Sample Input Files and Test Cases ... 7

Writing Source Code... 7

General Requirements ... 8

Planning .. 8

Module Structure .. 9

Meshes .. 15

Units .. 16

Coordinate Systems .. 16

Coupling Modules Together ... 17

Handling Errors ... 17

Handling I/O ... 18

Source Code .. 18

NWTC Subroutine Library ... 18

Fortran 2003 Standard... 18

Guidelines ... 19

Mixed Languages .. 22

Testing... 22

v

Verification ... 22

Validation .. 22

Version Checking.. 23

Testing New Features ... 23

Software Distribution .. 24

Ongoing Improvements to This Document ... 25

References ... 26

For Further Reading .. 27

Appendix A: Working With Subversion... 28

SVN Repositories.. 28

Working Copies .. 28

Workflow .. 29

Typical SVN Operations ... 30

The First Time Through .. 30

In an Existing Working Copy ... 31

Gotchas ... 33

Working with Branches .. 34

Additional Information ... 34

Appendix B: NWTC CAE Tool Development Policy .. 35

Appendix C: Recommended Practices for Code Development Using Subversion 36

Appendix D: Steps for Maintaining and Developing Software .. 37

Appendix E: Module Template ... 39

Appendix F: Subroutine Inputs and Outputs for Modules Developed for the FAST CAE Tool
Framework .. 54

Appendix G: Mesh Module and Types ... 57

Type: MeshType ... 58

Subroutine: MeshCreate.. 59

Subroutine: MeshPositionNode .. 59

Subroutine: MeshConstructElement ... 60

Subroutine: MeshCommit ... 60

Subroutine: MeshCopy ... 60

Subroutine: MeshNextElement (mesh traversal) .. 61

Subroutine: MeshElemNumNeighbors ... 61

Subroutine: MeshNextElemNeighbor (neighbor traversal) .. 62

Subroutine: MeshPack .. 62

vi

Subroutine: MeshUnpack.. 62

Subroutine: MeshDestroy ... 63

Accessing a Specific Element and Node Value in a Mesh ... 63

Element Names: .. 63

Appendix H: FAST Registry for Automatic Code Generation ... 64

Description .. 64

Syntax ... 64

Dimspec Entries .. 64

Typedef Entries ... 65

Registry Output ... 66

Example Registry File... 66

Appendix I: Example Driver Program for Modules in the FAST Modular Framework 68

Appendix J: Using the NWTC Subroutine Library .. 75

Parameters ... 75

Routines .. 76

Appendix K: Fortran Compilation Options .. 78

Appendix L: Instructions for Compiling FAST using IVF for Windows® 79

Compiling FAST Using the Windows Command Line .. 79

Set Compiler Variables ... 79

Set Local Paths .. 81

Run the Script ... 81

Creating FAST with the User-Defined Control Options for Interfacing with GH Bladed-
style DLLs ... 81

Compiling FAST Using Microsoft Visual Studio .. 83

Open a New Project .. 83

Add Source Files ... 83

Set Compiler Options .. 86

Build the Project ... 87

vii

List of Figures

Figure 1. NREL’s modular CAE tool, FAST. ... 2
Figure 2. Loose- (left) and tight- (right) coupling schemes. ... 3
Figure 3. The global coordinate system used for interfaces in the FAST modular framework 16
Figure 4. Example Windows® icons modified by TortoiseSVN to indicate the status of working

directories .. 29
Figure 5. Example results from the SVN checkout command on Linux. Notice that the files and

directories are no different from what you normally see except that SVN has included its own
.svn directory as a hidden file. .. 31

Figure 6. The TortoiseSVN checkout window. .. 31
Figure 7. Example results on Windows® after checkout using TortoiseSVN. 31
Figure 8. TortoiseSVN > Diff… opens TortoiseMerge to compare and merge changes in text

files. ... 33
Figure 9. Line, surface, and volume elements defined and managed by ModMesh_Types and

ModMesh modules: lines, triangles, quadrilaterals, wedges, and tetrahedra.......................... 57
Figure 10. The “Set Compiler Internal Variables” section of Compile_FAST.bat for FAST

v7.01.00a-bjj. Text in blue must be changed by the user before running the script. 79
Figure 11. An example of finding the IVF command prompt shortcut .. 80
Figure 12. The properties window for an IVF command prompt shortcut 80
Figure 13. The “Local Paths” section of Compile_FAST.bat for FAST v7.01.00a-bjj. Text in

blue must be changed by the user before running the script. .. 81
Figure 14. The command prompt window after Compile_FAST.bat has been run. 82
Figure 15. The New Project window in Visual Studio ... 83
Figure 16. Adding new folders for source files in Microsoft Visual Studio 2008. Note that the

Soultion Explorer window may be located in another part of the screen 84
Figure 17. Adding existing source files to a Visual Studio 2008 project. 85
Figure 18. The source files for FAST v7.01.00a-bjj listed in the Visual Studio Solution Explorer

window .. 86
Figure 19. The <project name> Property Pages window in Visual Studio with the compiling

options changed for FAST v7.01.00a-bjj .. 87
Figure 20. The Output window in Visual Studio after building FAST using the Debug

configuration. .. 88
Figure 21. The <project name> Property Pages window in Visual Studio, showing the location of

the Output File. ... 88

viii

List of Tables

Table 1. Subroutines required for the FAST modular framework. ... 10
Table 2. Derived data types required for the FAST modular framework. 11
Table 3. Some of the most common parameters available in the NWTC Subroutine Library. 76
Table 4. Some of the most common routines available in the NWTC Subroutine Library. 77
Table 5. Some compilation options available in Intel and GNU Fortran. 78

1

Introduction

Over the past two decades, the U.S. Department of Energy (DOE) has sponsored the National
Renewable Energy Laboratory (NREL)’s development of computer-aided engineering (CAE)
tools for wind turbine analysis. The tools are developed as free, publicly available, open-source,
professional-grade products as a resource for the wind industry. The tools are used by thousands
of wind turbine designers, manufacturers, consultants, certifiers, researchers, students, and
educators throughout the world. NREL has recently put considerable effort into improving the
overall modularity of its core CAE tool, FAST1,2, to accomplish the following benefits: (1)
improved ability to read, implement, and maintain source code; (2) increased module sharing and
shared code development across the wind community; (3) improved numerical performance and
robustness; and (4) enhanced flexiblity, enabling further development of functionality without
the need to recode established modules.

As more individuals and organizations modify FAST (or existing CAE tools) or develop new
modules for it, it becomes increasingly important to standardize development activities. It will
take concentrated effort to ensure that software being modified simultaneously by independent
entities is compatible and can be integrated into one version of quality software. (We do not have
resources to support multiple versions of software with different features that have to be
separately maintained.) The new modularization structure3 for FAST provides the standard
framework for all new development of tools in the FAST CAE tool framework. Reference 3
explains the features of the new FAST modularization framework, as well as the concepts and
mathematical background needed to understand and apply it correctly. This handbook explains
the code development requirements and best practices for the FAST modularization framework.
Much of the guidance in this document also applies to other tools developed at the National
Wind Technology Center (NWTC).*

Overview

It takes careful thought to write quality software, and that goal should be kept in mind from the
beginning of each development effort. The extra time spent writing quality software will help
reduce the amount of time it takes to track down problems in the software, and will allow more
people to benefit from the software that has been written.

This document is designed to assist developers in writing software to be used with FAST and
other NWTC CAE tools,† helping to make the software readable, portable, and robust. The
document, however, cannot completely cover everything that is necessary for developing quality
software, so, we recommend that developers also reference programming handbooks, the
documentation that comes with their compilers, and other resources for writing software.‡

* Please note that the current FAST source code (v7.01.00a-bjj) does not yet conform to this framework. Effort is
being made to convert to this new framework.
† The text in this document specifies which guidance in this document is specific to FAST; when not specified, the
guidance applies to all of the NWTC CAE tools.
‡ The section “For Further Reading” at the end of this document gives some suggestions.

2

Developers are encouraged to read this document in its entirety before planning new
development efforts or writing any source code. It may also be helpful to keep the steps for code
maintenance specified in Appendix D in mind while reading the rest of the document.

Definitions

Because some of the words used in software development have ambiguous meanings, the
following definitions are included to reduce the chance of miscommunication.

Alpha version: Software tested internally and possibly externally by a small number of selected
users. The source code may contain comments that indicate how it differs from the previous beta
version.

Archive: A collection of many files stored in a single file, often in ZIP or TAR file format.
Archives of NWTC CAE tools are used to easily distribute all of the files associated with a
particular version of the tool, keeping the directory structure.

Beta version: Software tested by a number of users and distributed externally to a number of
users, with any change comments from alpha versions removed. Software in beta form has
updated documentation (user’s guide and/or theory manual).

Branch: A directory in a Subversion repository that contains development versions of a CAE
tool. When branch directories have been sufficiently tested and approved by the CAE tool’s
primary owner, they are merged back into the repository’s trunk directory.

Code: See Source code

Coupling interval: The simulation-time increment at which the driver program will make calls
to a given module at subsequent simulation times.

Debug mode: A configuration of compiler settings that provides debugging information and
disables (or reduces, depending on the compiler) optimizations.

Driver program: An executable (main) program that calls a module. Driver programs are often
used to test the functionality of modules
(modules do not contain main PROGRAM
statements). Appendix I contains an example
driver program for the module provided in
Appendix E.

Glue code: The driver program that couples (or
glues) individual modules together. The
“Modular Interface and Coupler” in Figure 1 is
the glue code in the FAST framework.

Figure 1. NREL’s modular CAE tool, FAST.

3

Inputs: A set of values supplied to a system that, together with the states, are needed to calculate
future states and/or the system’s output.

Meshed inputs are inputs that are defined on a discretized boundary characterizing
the outer extent of the system.

Nonmeshed inputs are inputs that need not be represented on this discretized
boundary.

Library: A collection of software resources—such as subroutines, constants, and type
specifications—that can be used by other programs. A library itself is not an executable program.

Local variable: A variable accessible only from the subroutine or function in which it is defined.

Loose coupling: A time-integration scheme where two or more modules exchange data (inputs
and outputs) through the glue code at coupling intervals, but each module tracks its own states
and integrates its own equations with its own solver. (See Figure 2.)

Mesh: A discretization of a domain into a set of discrete sub-domains. A mesh is comprised of a
set of nodes (simple points in space) and the connectivity of the nodes (elements).

Module: A separable component of the FAST framework (e.g., the green boxes in Figure 1); a
Fortran MODULE is a program unit that contains specifications and definitions that can be used
by another unit of the program. Each component of the FAST framework may contain multiple
Fortran MODULEs.

Outputs: A set of values calculated by and returned from a system and that depend on the
system’s states, inputs, and/or parameters.

Meshed outputs are outputs that are defined on a discretized boundary
characterizing the outer extent of the system.

Nonmeshed outputs are outputs that need not be represented on this discretized
boundary.

Parameters: A set of internal system values, independent of the states and inputs, that can be
fully defined at initialization (possibly with time dependence that can be fully prescribed at
initialization) and characterize a system’s state equations (differential, difference, and/or
constraint) and output equations.

Meshed parameters are parameters
that are defined on the system’s
discretized domain.

Nonmeshed parameters are
parameters that need not be
represented on this discretized
domain.

Primary owner: The primary person
responsible for maintaining a particular

Figure 2. Loose- (left) and tight- (right) coupling

schemes.

M
o d

ul
a r

 I n
te

rfa
ce

an
d

Co
up

le
r

M
od

ul
ar

 In
te

rf
ac

e
an

d
Co

up
le

r

()

()

()

Module 1

Module 2

Module N

∫

∫

∫

()

()

()

Module 1

Module 2

Module N

∫

4

CAE tool, assigning development responsibility, and accepting all changes to that code. There
may be multiple people developing the same tool, but there is only one owner. The name of each
owner for the NREL CAE tools is listed next to the link for its SVN repository on http://wind-
dev.

Release mode: A configuration of compiler settings that optimizes the code and does not provide
debugging information. Code compiled in release mode almost always runs significantly faster
than that compiled in debug mode.

Released version: A version of software that is available for distribution to users, primarily
through the NWTC Design Tools web site. Released versions can be either alpha or beta
versions, but it is assumed that the version has been sufficiently tested and documented so that
nondevelopers can use the tool.

Source code: Text in the format and syntax required by the programming language it is written
in. Often used interchangeably with the words “software” or “computer program.”

States: A set of internal values of a system used to calculate future state values and/or the
system’s output if the inputs to the system are supplied.

Constraint states are states that are not differentiated or discrete (i.e., constraint
states are algebraic variables) and are characterized by algebraic constraint
equations (i.e., equations without time-derivatives of constraint states).

Continuous states are states that are differentiable in time and are characterized by
continuous-time differential equations.

Discrete states are states that only have a value at discrete steps in time and are
characterized by discrete-time difference equations.

Meshed states are states (continuous, discrete, and/or constraint) that are defined
on the system’s discretized domain.

Nonmeshed states are states (continuous, discrete, and/or constraint) that need not
be represented on this discretized domain.

Tight coupling: A time-integration scheme where each module sets up its own equations, but the
states are tracked and integrated by a solver common to all of the modules. (See Figure 2.)

Trunk: A directory in a Subversion repository that contains the main development version of a
CAE tool. The trunk is assumed to contain code that is stable and has passed all of its version
checking.

Type: (also “data type”) A classification of data that determines the data’s properties. Examples
of intrinsic data types include integer, floating-point, Boolean, and character values. Derived data
types are user-defined, and are sometimes called “data structures.”

Validate: To compare software predictions with test data.

http://wind-dev/
http://wind-dev/

5

Verify: To compare software predictions with hand calculations or predictions from other
software.

Version checking: (also “regression testing”) Comparing output from a new software version
with output from previous versions.

Copyright and Licensing

Historically, NWTC CAE tools have been distributed under the Data Use Disclaimer Agreement
found on our web site: http://wind.nrel.gov/designcodes/disclaimer.html. However, at the time of
this writing, we are starting to release NWTC CAE tools under the GNU General Public License
(GPL) v3.0 open-source license.4 Some codes may also be offered under other less restrictive
open-source licenses on a per-case basis.

All source code files must have copyright and license agreement information listed at the
beginning of the file. See the “LICENSING” section in the module in Appendix E of this
document for an example.

Version Naming

Software that is used by more than just one person should have a way of tracking versions. The
program should display the version number when it runs and—if possible—include the version
number in any output files it creates.

If you make changes to NWTC software, please change the variables containing the version
number and date. Alpha versions have the form “v0.00.00a-bjj” where “0.00.00” is the version
number, the “a” represents the alpha revision (“a”, “b”, “c”, …), and the “bjj” should be replaced
with your initials (or organization name). Beta versions released by the NWTC do not contain
initials or alpha revision characters. The number to the left of the first decimal in the version
number should be incremented for major rewrites, overhauls, and major upgrades. The number
between the decimals should be incremented when features are added, and must be incremented
when the input file changes. The number to the right of the second decimal is for bug fixes,
changes to output, and minor changes. To avoid confusion between the month and day when
writing dates, use text instead of numbers for the month. We recommend using “dd-mmm-yyyy”
format for all dates (e.g., 08-Aug-2012).

Version Control

Coordinated multi-user development of the NWTC’s CAE tools is managed under Subversion5
(SVN), an automatic software version control and management system in wide use by the open
source software development community. The SVN system:

• Provides developers at NREL and at remote locations with network access to source code
in a centrally managed and backed-up code repository,

• Maintains a history of the code that allows retrieving and displaying earlier versions of
the code, change logs, and differences between versions,

http://wind.nrel.gov/designcodes/disclaimer.html

6

• Supports multiple developers working on the code, automatically detecting and reporting
potentially conflicting modifications,

• Permits for read and modify access on a per-project and per-user basis, and

• Provides notification and an audit trail of modifications so that no change can be made to
the source code without a record of the change and the individual making the change.

An overview of SVN is provided in Appendix A of this document.

The central data storage in Subversion is called a “repository.” Each NWTC CAE tool has its
own repository, and each repository is organized into three directories called “trunk,”
“branches,” and “tags.” The trunk directory holds the latest stable (working) copy of the CAE
tool. The branches directory holds development versions of the trunk, and the tags directory
contains copies of the trunk that are tagged with specific version numbers. Appendix B discusses
the NWTC’s policies for using the repositories.

Documentation

Software is much easier to understand and maintain when it is well documented. Documentation
should include comments in the source code, change logs, user’s guides, theory manuals, and
sample input files and test cases.

Commenting the Code
Software developers must document their source code. Appropriate comments in the source code
will aid in modifying existing code, adding new features, and finding errors.

Each variable in the source code must contain comments that indicate its purpose and—if
applicable—what its units are (e.g., meters or seconds).

Comments should be used to indicate logical sections within the source code as well as to
indicate what the code is intended to do and how it works. The intended functionality might not
be obvious to anyone looking at the code later (sometimes not even to the person who wrote the
code). For example, if a particular algorithm is being used, the comments should clearly indicate
how it works. If it is a new or complicated algorithm, cite a paper or other source where the
algorithm can be found with additional documentation.

See the module in Appendix E of this document for an example of how to add comments in
source code.

Change Logs
Software must have a separate log file that lists what was changed in each released version.
These change log files—typically named “ChangeLog.txt”—provide a history of the code’s
development and are posted on our web site with released versions of the code to allow users to
see what has changed before they download the entire archive.

For each version of the software, the change log should contain the version number, date, and
name of the individual(s) making the change(s). Briefly describe changes to the code and reasons
behind them. Indicate whether the changes impact any results. Changes to test cases or to other

7

documents that are released with the code should also be listed in the change log. The log files
do not need to include changes that are transparent to the user (e.g., a variable in the source code
was renamed).

Subversion Commit Logs
When you commit changes to the SVN repository, you should add comments to the Subversion
log. These comments (commit/log messages) should indicate to other developers what you have
changed and why (new routines, variable name changes, restructuring, etc.). Good commit
comments make it possible to find a previous version if something doesn’t work as expected.
These comments will also be referenced by the tool’s primary owner when SVN branches are
merged back into the main trunk.

You may wish to create a developer’s change log file to keep track of all your changes as you are
working to help you remember what you have done and why the changes were made. You can
then copy the text from this file into the SVN log when you commit the changes to the
repository.

User’s Guides and Theory Manuals
Beta versions of software must have a well written user’s guide and theory manual. A user’s
guide helps people understand how to use the code. It should contain a description of the inputs
(input files), outputs (output files), and anything else required to run the code. Figures are
especially helpful. Theory manuals should document and explain equations and algorithms that
are implemented in the code.

Sample Input Files and Test Cases
Users often rely on sample input files and test cases to learn how to use new software. Sample
input files should contain accurate descriptions of the input parameters (including units where
appropriate). Many users will use these descriptions to understand the parameter instead of
taking the time to look it up in the user’s guide. Users also often take the sample test cases and
modify them only slightly, which can transfer errors and simplifications from the sample files to
many research projects. Please provide adequate documentation about the test cases, document
any simplifications you have made (e.g., you reduced the number of analysis points to make the
distribution file smaller), and carefully check that the input data does not contain errors.

Writing Source Code

Writing quality software for distribution takes careful thought and planning. You must follow the
development policy described in Appendix B and the steps outlined in Appendix D of this
document. If you are modifying existing code, take the time to understand what it does before
making changes in the source code. Pay attention to details, and try to keep the big picture in
mind, especially if you are modifying a complex code. Your changes may work for the case you
intend, but think about how it will affect other cases and the other features of the code. Are there
cases where the feature you have added does not apply or contradicts other physics of the model?
Could numerical problems occur (division by zero, square roots of negative numbers, round-off
errors, value outside of valid range, etc.)? Be sure to address these (and other) issues so that your
code does not adversely affect the rest of the software (or other codes it links with). It is

8

important to keep in mind that many people will be using and compiling your software, probably
in ways you didn’t expect.

General Requirements
Keep the following requirements in mind while you are developing software for the NWTC:

• Modules need to be dynamically allocatable, allowing multiple instances to exist
simultaneously (e.g., multiple FAST simulations of turbines linked together in another
simulation to model a wind farm).

• NWTC CAE tools should be able to link with codes compiled in Fortran or C/C++.

• NWTC CAE tools should be able to run on Windows® or Linux platforms.

• NWTC CAE tools should be able to be compiled with Intel® Visual Fortran (IVF) and
gfortran§.

• NWTC CAE tools may be linked with multiple driver programs (e.g., FAST can be a
standalone program or used in Simulink; AeroDyn can be used in FAST, MSC.Adams,
SIMPACK, and FEDEM).

• Modules written for the FAST framework must adhere to the requirements of the
template in Appendix E and described in this document.

Planning
Before writing source code, developers must outline a plan (or pseudocode) of the changes
and/or additions they intend to make and discuss it with the tool’s primary owner and any other
developers working on the same CAE tool. The plan should be written in a document that will
help create a user’s guide or theory manual; the plan should indicate what the code (and each
part of it) is supposed to do and how it should interact with other modules.

Decide whether you need to modify existing code or implement a new module. (New theory
should be implemented in new modules.) For modules written in the FAST framework, write out
all equations and algorithms in the form required for the template in Appendix E and Appendix F
of this document. Determine whether the underlying formulation fits the requirements of tight
coupling, and choose whether tight and/or loose coupling will be used. If the module can be
tightly coupled, we recommend that you implement it in such a way that both loose and tight
coupling are available options. For loose coupling, be sure to write out the formulation for the
time integration solver you will implement. Clearly define the inputs, outputs, states (continuous,
discrete, and constraint), and parameters for the module; make sure that all inputs can be derived
from the outputs of other modules, and document the input-output transformation equations (U),
not including mapping between meshes.

It may be tempting to skip the planning step in favor of writing code, but this step is the most
important and probably most time-consuming task in the software development process.
Careful planning will reduce the amount of time spent tracking down bugs and fixing problems
in your source code.

§We assume that the tools should be able to be compiled with current versions of the IVF and gfortran compilers.
Some features may not be available in earlier versions of the compilers.

9

Module Structure
Software written for the FAST framework must be formulated to fit the template listed in
Appendix E of this document. This framework standardizes the interface between modules, and
it has been designed to allow both loose and tight coupling with the possibility for linearization
(as well as other features)3; Table 1 lists the subroutines required for each option.**

Each of the subroutines listed in Table 1 operate on data structures (types) defined for the
module. These derived data types are listed in Table 2. To avoid potentially circular build
dependencies, types defined and used by a module are defined in a separately compiled module
named “ModuleName_Types” that will then be used by the “ModuleName” module itself.

The ModuleName_Types module will be generated automatically using the FAST Registry
supplied by the NWTC as described in Appendix H. Developers will create a table of the data for
each type using the format described in Appendix H, and the FAST Registry will generate the
type definitions as well as the system input and output extrapolation/interpolation subroutines,
copy/destroy subroutines, and the pack/unpack subroutines. This automation will reduce the
chance for errors that may occur in writing the number of subroutines required. The remaining
subroutines (initialize/end, time-stepping, and Jacobian) will be written by the developer using
the template for the ModuleName module in Appendix E.

Other than replacing the ModName text,** you should not modify the subroutine statements in
the template module when you implement them in your modules. Do not add, remove, or change
the order of any subroutine arguments, and do not change the INTENT attributes. Keep all of the
subroutines and types defined in the sample modules, even if your module does not have a
particular feature. For example, if your module does not have constraint states, do not delete the
ModName_CalcConstrStateResidual subroutine or the data type definition of
ModName_ConstraintStateType.

** Note that ModuleName in the template module would be replaced by the name of the module being developed.
ModName would be replaced by either the name of the module being developed or an abbreviation of it.

10

Table 1. Subroutines required for the FAST modular framework.

Generated
by Registry Loose

Tight
(Time Marching)

Tight
(Linearization)

• ModName_Init
• ModName_End

• ModName_UpdateStates
• ModName_CalcOutput
• ModName_CalcContStateDeriv
• ModName_UpdateDiscState
• ModName_CalcConstrStateResidual

• ModName_JacobianPInput
• ModName_JacobianPContState
• ModName_JacobianPDiscState
• ModName_JacobianPConstrState

Input/Output Extrapolation/Interpolation Subroutines
• ModName_Input_ExtrapInterp
• ModName_Output_ExtrapInterp

• ModName_Pack
• ModName_Pack{TypeName *}
• ModName_Unpack
• ModName_Unpack{TypeName *}

• ModName_Copy{TypeName *}
• ModName_Destroy{TypeName *}

Template Requirements

*TypeName i s the name of the data type to be operated on; i t i s one of the fol lowing va lues : Param,
Input, Output, ContState, DiscState, ConstrState, OtherState, POutputPInput, PContStatePInput, PDiscStatePInput,
PConstrStatePInput, POutputPContState, PContStatePContState, PDiscStatePContState, PConstrStatePContState,
POutputPDiscState, PContStatePDiscState, PDiscStatePDiscState, PConstrStatePDiscState, POutputPConstrState,
PContStatePConstrState, PDiscStatePConstrState, PConstrStatePConstrState

Copy/Destroy Subroutines

Initialize/End Subroutines

Pack/Unpack Subroutines

Time-Stepping Subroutines

Jacobian Subroutines

11

Table 2. Derived data types required for the FAST modular framework.

Purpose
• ModName_InitInputType Initialization input data
• ModName_InitOutputType Initialization output data
• ModName_InputType System inputs
• ModName_OutputType System outputs
• ModName_ParameterType System parameters
• ModName_ContinuousStateType Continuous states
• ModName_DiscreteStateType Discrete states
• ModName_ConstraintStateType Constraint states
• ModName_OtherStateType Other states
• ModName_PartialOutputPInputType Partial derivative of output equations with

respect to inputs
• ModName_PartialContStatePInputType Partial derivative of continuous state equations

with respect to inputs
• ModName_PartialDiscStatePInputType Partial derivative of discrete state equations

with respect to inputs
• ModName_PartialConstrStatePInputType Partial derivative of constraint state equations

with respect to inputs
• ModName_PartialOutputPContStateType Partial derivative of output equations with

respect to continuous states
• ModName_PartialContStatePContStateType Partial derivative of continuous state equations

with respect to continuous states
• ModName_PartialDiscStatePContStateType Partial derivative of discrete state equations

with respect to continuous states
• ModName_PartialConstrStatePContStateType Partial derivative of constraint state equations

with respect to continuous states
• ModName_PartialOutputPDiscStateType Partial derivative of output equations with

respect to discrete state
• ModName_PartialContStatePDiscStateType Partial derivative of continuous state equations

with respect to discrete states
• ModName_PartialDiscStatePDiscStateType Partial derivative of discrete state equations

with respect to discrete states
• ModName_PartialConstrStatePDiscStateType Partial derivative of constraint state equations

with respect to discrete states
• ModName_PartialOutputPConstrStateType Partial derivative of output equations with

respect to constraint states
• ModName_PartialContStatePConstrStateType Partial derivative of continuous state equations

with respect to constraint states
• ModName_PartialDiscStatePConstrStateType Partial derivative of discrete state equations

with respect to constraint states
• ModName_PartialConstrStatePConstrStateType Partial derivative of constraint state equations

with respect to constraint states

Type Name
Template Data Types

12

The data types and subroutines required for the template modules are described below; the inputs
and outputs for subroutines contained in the ModuleName module are also pictured in Appendix
F of this document.

Data Types
All of the variables used in a module during time-stepping operations—except local variables—
must be placed in one of the user-defined derived data types in Table 2. There are separate
derived data types for system inputs, outputs, states, and parameters†† using the definitions found
at the beginning of this document, as well as initialization input and output data and partial
derivatives of the state and output functions with respect to the states and inputs. (Variables
defined as local subroutine variables that do not retain their values between subroutine calls do
not need to be stored in one of these data types.) States must be divided into continuous, discrete,
constraint, and other states. The derived data types may themselves contain variables of derived
data types, but INTEGER, LOGICAL, or CHARACTER variables are allowed only in the
derived data types for initialization input and output, parameters, and other states.

The other states are stored in a data type called “ModName_OtherStateType.” In tight coupling,
this data type must only be used for code efficiency purposes (e.g., storing an index into a lookup
table or previous calculations so they don’t have to be redone) and cannot be used to impact the
results of the calculations. In loose coupling, the other states data type may also store states that
don’t fit the definitions of continuous, discrete, or constraint. Another possible use of the
ModName_OtherStateType is to store previous values of continuous states if a multistep time-
integration method is employed in a loosely coupled approach. In this case, the
ModName_OtherStateType data type should include the last k continuous states (i.e., it would
likely store an array of the previous k continuous states) where k is the order of the method.

Data of type ModName_OtherStateType can be updated in any subroutine, and the glue code
does not associate it with a particular time increment. Unless otherwise specified in this
document, we cannot guarantee that the glue code will call subroutines in a particular order or
that time will always be advancing. Thus, the module developer must take care when using
ModName_OtherStateType, making sure to store any switches or time it needs in the type, and
providing appropriate checks for errors.

Each module may define and pass data using its own discretization scheme(s), and separate
meshes (schemes) may be used for input, output, parameter, and state data. The mesh structure is
discussed further in the “Meshes” section of this document.

All of the derived data types are defined in the ModuleName_Types module, which will be
generated using the FAST Registry described in Appendix H.

Input and Output Extrapolation/Interpolation Subroutines
The glue code may keep a time history of the system inputs and outputs of each module, and it is
desirable to use these time histories to find values at specific times. Thus, the system input and
output derived types for each module must have corresponding subroutines to extrapolate and
interpolate based on the time history. These subroutines fit a polynomial through the time-history

†† Note that system parameters do not need to be defined with the Fortran PARAMETER attribute. System
parameters are values that do not change after initialization, but they do not need to be defined at compile time.

13

data (the order of the polynomial is dictated by the number of time steps in the time history) and
evaluate the polynomial to find the system inputs or outputs at a specified time. These
subroutines are defined in the ModuleName_Types module, which will be generated using the
FAST Registry described in Appendix H.

Copy/Destroy Subroutines
Because the template module allows the developer to use POINTERS, meshes (which have
POINTERS in them; see Appendix G of this document), and ALLOCATABLE arrays in user-
defined data structures, each derived type must have corresponding subroutines to copy and
destroy the derived data type. These subroutines are defined in the ModuleName_Types module,
which will be generated using the FAST Registry described in Appendix H.

Pack/Unpack Subroutines
It is sometimes necessary to stop large simulations and restart them later. The subroutines
ModName_Pack{TypeName} and ModName_Unpack{TypeName}‡‡ allow codes developed in
the FAST framework to have this capability. Each derived data type has a corresponding
subroutine to pack (save) its data into separate arrays of type REAL(ReKi), REAL(DbKi) and
INTEGER(IntKi), and a subroutine to unpack (retrieve) the derived type from the three arrays.
All of the pack and unpack subroutines are defined in the ModuleName_Types module, which
will be generated using the FAST Registry described in Appendix H. These subroutines may also
be useful in mixed-language programming.

Initialize/End Subroutines
The ModName_Init subroutine—defined in the ModuleName module—is designed to be called
one time at the beginning of each simulation for each instance of the module (e.g., individual
turbine). It is the first subroutine that will be called from the ModuleName module. It performs
initialization tasks for the module, including reading input files and setting up any meshes.§§ The
subroutine returns the system parameters, an initial guess for the input to the system, the initial
states (the constraint states should be calculated using the initial guess for the system inputs, thus
the constraint states are also considered a guess), and time increment for loose coupling and
discrete states. The glue code (driver program) will supply a suggestion for the module’s
coupling interval, but the initialization routine may override this value.

The ModName_End subroutine is designed to be called one time only for each instance of the
module, at the end of a simulation. It is the last subroutine that will be called from the
ModuleName module. Its task is to release memory and close files.

Time-Stepping Subroutines
All of the time-stepping subroutines are defined in the ModuleName module. The driver program
sends the current simulation time—stored as a double-precision real number—to all of the time-
stepping subroutines.

‡‡ TypeName is any one of a list of data types as defined in the footnote of Table 1. For example there will be
subroutines named ModName_PackParam, ModName_PackInput, ModName_PackOutput, etc.
§§ Meshes that follow meshes from other modules should be initialized in an undeflected position to allow the
mapping between meshes to be set up properly. See the “Coupling Modules Together” section of this document.

14

The ModName_UpdateStates subroutine is called in a loose coupling scheme at the coupling
interval defined in the module initialization. It is given the simulation time and step, system
parameters, and a time history of system inputs along with an array of the times associated with
those inputs. The states are input with values of continuous, discrete, and constraint states at the
simulation time. The subroutine solves for the constraint states and updates the continuous and
discrete states to their values at the next coupling interval. If the system inputs are needed for
these calculations, subroutine ModName_UpdateStates should call
ModName_Input_ExtrapInterp to access the system inputs at desired times within the time
interval.

The ModName_CalcOutput subroutine is given the current simulation time, the system inputs
and states at the current simulation time, and system parameters. It computes the system outputs
at the current simulation time. In loose coupling, ModName_CalcOutput subroutine is called at
the coupling interval defined in the module initialization, but in tight coupling it may be called at
other times.

The ModName_CalcContStateDeriv subroutine calculates the time derivatives of the
continuous states at the current simulation time. It operates on the inputs and states defined at the
current simulation time and the system parameters.

The ModName_UpdateDiscState subroutine is called at the coupling interval defined in the
module initialization. It is given the simulation time and step, the inputs and states defined at the
simulation time, and system parameters. It returns the discrete states updated to their values at
the next coupling interval.

The ModName_CalcConstrStateResidual subroutine solves for the residual of the constraint
state functions (which should be zero when the constraint-state guess is correct) at the current
simulation time. It is given the system’s parameters and its inputs and states (continuous and
discrete states and a guess for the constraint states) at the current simulation time; it returns the
residual of the constraint-state functions.

If the module can be tightly coupled, we recommend that you implement it in such a way that
both loose and tight coupling are available options (e.g., to minimize coding redundancy, the
loose coupling ModName_UpdateStates subroutine would call the tight-coupling routines
ModName_CalcConstrStateResidual, ModName_CalcContStateDeriv, and
ModName_UpdateDiscState).

Jacobian Subroutines
There are four subroutines to compute Jacobians, which are not used by the glue code in loose-
coupling schemes. Each subroutine is given the current simulation time, parameters, and system
inputs and states at the current simulation time. The subroutines calculate up to four partial
derivatives (which are optional arguments): the output (Y), continuous- (X), constraint- (Z), and
discrete- (Xd) state functions with respect to a common variable. The
ModName_JacobianPContState subroutine calculates the Jacobians with respect to the
continuous states (x); the ModName_JacobianPDiscState subroutine calculates the Jacobians
with respect to the discrete states (xd); the ModName_JacobianPConstrState subroutine
calculates the Jacobians with respect to the constraint states (z); and the

15

ModName_JacobianPInput subroutine calculates the Jacobians with respect to the system
inputs (u).

For tightly coupled time marching simulation, four Jacobians must be defined: ∂Z/∂z, ∂Z/∂u,
∂Y/∂z, and ∂Y/∂u. To allow linearization in tightly coupled schemes, all sixteen Jacobians must
be defined.*** We recommend that tightly coupled modules always define all sixteen Jacobians
available in the template so that the module can be linearized.

If possible, Jacobians should be derived and implemented analytically to give the best numerical-
convergence performance. However, if that is impractical, numerical implementations of the
Jacobians are acceptable. All of the Jacobian subroutines are defined in the ModuleName
module.

Meshes
Where applicable, software components in the FAST framework that use spatial discretizations
(meshes) may define them using the ModMesh and ModMesh_Types modules. Inputs, outputs,
parameters, and states can all be stored as meshed data; however, input and output data on
discretized spatial boundaries must be stored using the ModMesh and ModMesh_Types modules.
These modules contain the data structures and methods used to define meshes and meshed data
communicated between components of the software. A mesh is comprised of a set of nodes
(simple points in space) and their connectivity as specified by their membership as vertices in an
element (the space between nodes; see Appendix G for examples). No single mesh may contain
elements of mixed spatial dimensions (e.g., a mesh cannot contain both a line [1-dimensional]
element and a surface [2-dimensional] element). Instead, separate meshes must be created to
accommodate these discretizations. One mesh will contain the elements of one dimension; a
separate mesh will contain the elements of another dimension. Using separate meshes allows the
units of the mesh fields (forces, moments, and added mass) to be defined consistently, which will
be necessary for spatial interpolation and mapping of the meshes.

A mesh is associated with one or more fields that represent the values of variables or “degrees of
freedom” at each node. A mesh always allocates one field named Position that specifies the
instantaneous location in three-dimensional space as an Xi,Yi,Zi triplet of each node. In addition,
the ModMesh module predefines a number of other fields of triples representing velocities,
forces, and moments as well as a field of 36 values representing added mass, and a field of 9
values representing a direction cosine matrix. These fields may be allocated by the module
developer at initialization. Detailed descriptions of the ModMesh and ModMesh_Types modules
are provided in Appendix G of this document.

The operations on meshes defined in the ModMesh module are considered low-level and include
basic operations such as creation, spatio-location of nodes, construction, committing the mesh
definition, initialization of fields, accessing and updating field data, copying, deallocating, and
destroying meshes. Higher level operations on meshes—such as interpolation, remapping,
subsetting, and joining—are being developed in another module.

*** In equation form: ∂Y/∂u, ∂Y/∂x, ∂Y/∂z, ∂Y/∂xd, ∂X/∂u, ∂X/∂x, ∂X/∂z, ∂X/∂xd, ∂Z/∂u, ∂Z/∂x, ∂Z/∂z, ∂Z/∂xd, ∂Xd/∂u,
∂Xd/∂x, ∂Xd/∂z, and ∂Xd/∂xd

 .

16

The ModMesh routines for creation,
construction, committing the mesh definition,
and initialization of fields are intended to be
called from the ModName_Init routine in the
FAST framework. Once a mesh is committed
and initialized, it may be used in the time-
stepping and Jacobian subroutines in the FAST
framework. Except for passing meshes between
different components and other modules for
inter-component mapping of meshes, the driver
program (glue code) does not generally know
about or use the contents of the MeshType data
structures it is forwarding between the
components.

Units
Data passed through the module interface in the
FAST framework must be stored in the
International System of Units (SI)—specifically
the SI base units, which includes kilograms,
meters, seconds, and radians.

Mesh fields of forces, moments, and added mass
must have units that are per unit length, per unit
area, and per unit volume for line, surface, and
volume elements, respectively. The forces,
moments, and added mass are lumped for point elements.

Coordinate Systems
The coordinate positions and loads passed between modules (through the module interface) in
the FAST framework are assumed to be relative to a global coordinate system. The system,
denoted Xi,Yi,Zi, is the right-handed set of orthogonal axes of the inertial reference frame shown
in Figure 3, and is described as follows:

Origin:
For land-based systems: The point where the undeflected tower centerline
intersects with the ground.

For offshore systems: The point where the undeflected support structure centerline
intersects with mean sea level (MSL).

Xi axis: Pointing horizontally in the nominal downwind direction (aligned along
the 0° horizontal wind direction).

Yi axis: Pointing to the left when looking in the nominal downwind direction (i.e.,
looking along the positive Xi axis).

Figure 3. The global coordinate system used

for interfaces in the FAST modular framework

17

Zi axis: Pointing vertically upward opposite to gravity; for vertical towers, along
the centerline of the undeflected tower (when the support platform is undisplaced
for offshore systems).

Coupling Modules Together
The code that couples individual modules together is referred to as the “glue code.” The glue
code interconnects the individual modules, derives inputs from outputs (including coordinate
transformations and mapping between different discretizations in space and time), and drives the
overall solution forward. In tight coupling, the glue code has the added tasks of integrating the
coupled system equations using one of its own solvers and driving the linearization calculations.

The task of developing the glue code for NWTC CAE tools is the responsibility of NREL
developers; other developers may choose to create their own glue code—particularly for
testing—but it is not required. Module developers must, however, take care to specify the exact
form of the inputs and outputs (e.g., displacement, velocity, force) and document the input-
output transformation equations (including functions U) (not including the mapping of meshes)
so that NREL can develop the glue code correctly. For the coupling to work properly, it is
important for developers to follow the framework provided in Appendix E and the guidelines
listed in this document. Module developers should be aware that unless otherwise specified in
this document, we cannot guarantee that the glue code will call subroutines in a particular order
or that time will always be advancing.

The glue code has two responsibilities regarding meshes: (1) to couple interface meshes (that
may be non-matching) by determining nearest-neighbor locations for transfer of data (mapping),
and (2) to interpolate data based on the mapping for transfer between modules. The interface
region associated with a module must be spatially discretized (meshed) with one or more of the
element types described in Appendix G (points, lines, surfaces, and/or volumes) and with the
desired location of inputs and outputs specified for each element. As stated above, the meshes
need not be “matching;” the interface mesh of one module may be more refined than that of the
coupled module.

The mapping between module interface meshes, as described above, is performed at any time
step when the “RemapFlag” variable is set to TRUE in the ModMesh module. In cases where
the interface meshes do not move relative to each other, the mapping should only be done once at
initialization. Alternatively, either module might request a new mapping in the event of
significant mesh distortion or significant relative motion between interface meshes. In cases
where an interface mesh in a module will follow an interface mesh of another module, both
meshes should be initialized in the undeflected position. RemapFlag must be set to FALSE after
initialization to ensure that the “follower” module updates the interface mesh such that there is
no relative motion between the interface meshes.

Handling Errors
Modules in the FAST modularization framework must never end the calling (driver) program.
Intrinsic routines called from modules must not terminate program execution, either.††† Instead,
each subroutine in the framework contains arguments called “ErrStat” and “ErrMsg,” which

††† Many intrinsic Fortran routines (ALLOCATE, DEALLOCATE, READ, etc.) have optional error status variables
that can be used to prevent the routine from terminating program execution.

18

allow the module to tell the driver program if an error occurred. The ErrStat argument is an
integer value that should be one of the NWTC_Library’s error-level parameters: ErrID_None,
ErrID_Info, ErrID_Warn, ErrID_Severe, or ErrID_Fatal (see Appendix J). The ErrMsg argument
is a string of characters that describes the error (it should be empty if no error occurred). The
calling (driver) program will handle the errors as it sees fit (possibly writing to the screen or to a
log file).

Handling I/O
We recommend that developers handle I/O for their modules in a way consistent with FAST’s
current look and feel. That is, modules read their own input files and have the option to write
their own output files. If a module developer wishes to have the driver code collect its output and
write it to a single master output file, you should add an array variable called “WriteOutput” to
ModName_OutputType. This array should contain only the data that the module wants written
to the file. The glue code may have to interpolate this array to obtain output at time intervals
consistent with other modules. The names and units associated with each column of the
“WriteOutput” array should be specified at initialization using array variables called
“WriteOutputHdr” and “WriteOutputUnt,” which are contained in ModName_InitOutputType
(see Appendix E for an example).

Module developers are encouraged to keep their I/O in separate subroutines and/or MODULES
that can easily be separated out and modified, should a new method be desired. It may be
desirable to define and use a derived data type that contains all of the information from the
module’s input file.‡‡‡

Source Code
Source code must be written in either Fortran, C, or C++, taking care to strictly adhere to the
programming standard you are using (i.e., do not use a particular compiler’s extension to the
standard). NWTC CAE tools have traditionally been written in Fortran, so most of our guidelines
are specific to Fortran; however, C/C++ programmers are encouraged to read the guidelines and
apply them to their own situations. Also note that for simplification purposes, this document will
discuss compiler options using IVF for Windows® syntax. Linux and gfortran users should use
the table in Appendix K for comparable options.

NWTC Subroutine Library
The NWTC Subroutine Library6 is a collection of many general-use routines and constants used
in most NWTC CAE tools. The library contains many constants (like π) as well as routines for
I/O and numerical operations. A more detailed description is provided in Appendix J of this
document. Use this library whenever possible; if you need modifications or a new routine added
to it, please contact the developers of the NWTC Subroutine Library.

Fortran 2003 Standard
If you are programming in Fortran, write code that adheres to the Fortran 2003 standard7. If that
is not possible, isolate all of the nonstandard code into a small subroutine in a separate source file
(such as the NWTC Subroutine Library’s Sys*.f90 file). To check that your Fortran code adheres

‡‡‡ A derived data type containing all input file information could be passed to the module inside the
ModName_InitInputType data structure, allowing additional options for reading the module’s input data.

19

to the Fortran 2003 standard, you should compile your code using the /stand:f03 compiler
option.

Guidelines
The following guidelines will help you write code that meets the general requirements listed
above. They will also help you avoid some of the more common deviations from the Fortran
2003 standard and some undesirable programming practices that are allowed by the standard:

• Use Fortran’s free source form; do not use fixed or tab source forms.

• Do not let your Fortran source code exceed 132 characters per line. Comments exceeding
this limit are okay, as long as the comment indicator (!) occurs before column 132, but
keep in mind that it is difficult to read long lines in some text editors.

• Do not include any tab characters in the source code. If you need a tab character in a
string, use the NWTC Subroutine Library’s TAB parameter (ASCII character 9). Be sure
to tell your source code editor to convert tabs to spaces. We suggest 3 spaces per tab.

• Do not write IF statements that require short-circuit evaluation. Fortran compilers are not
required to evaluate comparisons in a particular order or to any level of completeness (as
long as they are logically equivalent), thus we cannot say,

IF (INDEX > 0 .AND. CharVar(INDEX) == ‘Y’) THEN

without getting an error if the first condition is FALSE. In this example, you should
instead say,

IF (INDEX > 0) THEN
 IF (CharVar(INDEX) == ‘Y’) THEN

• Variables must be explicitly defined using meaningful variable names.
o Use IMPLICIT NONE statements.

o Use INTENT() specifications on variables passed as subroutine and function
arguments.

o Declare variable KINDs using the parameters in the NWTC Subroutine Library’s
“Precision” module. (This makes it easier to port to other systems.) For example,
write

 REAL(DbKi) :: DummyDouble ! Example real number
 REAL(ReKi) :: DummyReal ! Example real number
 INTEGER(IntKi) :: DummyInt ! Example integer number

instead of

 REAL(8) :: DummyDouble ! Example real number
 REAL(4) :: DummyReal ! Example real number
 INTEGER(4) :: DummyInt ! Example integer number

20

o Use the same name for variables in input files as they are used in the source code
(e.g., if air density is a variable called “AirDens” in the source code, call it
“AirDens” in the input file as well).

o Declare only one variable per line, followed by a comment describing the
variable’s purpose and a description of its units.

o Group variable declarations in an intuitive manner.

o Use ALLOCATABLE arrays instead of pointers whenever possible. (Pointers are
harder to maintain, they often cause memory loss, and compilers have a hard time
optimizing them.)

o If you must use the POINTER attribute in a derived data type, you must also
provide subroutines to copy and destroy the derived data type.

• Store data in the main program and pass it through subroutine arguments. (It is not
thread-safe to use global variables.)

o Do not use COMMON blocks.

o Do not store data in modules (i.e., do not declare variables in the specification
part of a module; it is acceptable to declare constants with the PARAMETER
attribute and to specify type definitions).

o Do not use the SAVE statement or attribute. (Watch out for variables that are
given the SAVE attribute by default.)

o Do not write code that depends on the /Qsave or /automatic options to apply the
SAVE attribute automatically.

o Do not initialize local variables in their declaration statements. (Intel Fortran
gives these variables the SAVE attribute by default.)

• Explicitly initialize your variables (but not in their declaration statements). Do not rely on
the compiler to initialize everything to zero. Your code must not depend on the /Qzero
compiler option.

• Use generic instances of subroutines/functions if they exist (e.g., use the ABS() function
instead of DABS() or IABS(); use the NWTC Library’s ReadVar() routine instead of
ReadRVar() or ReadIVar()).

• Avoid using EQUIVALENCE statements. (It is very hard to maintain code with these
statements, and compilers have trouble optimizing it.)

• DEALLOCATE arrays and pointers when they are no longer needed, including at the end
of a program. (Do not rely on the executable program to automatically deallocate them;
memory leaks occur in programs like MATLAB® if you fail to do this step.)

• Provide error checking in your code so that it does not crash ungracefully or return
nonsensical data. This is especially important on I/O and mathematical operations (read,
write, open files, division by zero, logarithms of negative numbers, value outside of valid
range, etc.). See the “Handling Errors” section of this document for more details.

21

o Use the error checking provided in the NWTC Subroutine Library routines
whenever possible.

o If an error occurs, provide a descriptive error message.

o Do not use STOP or ABORT statements. Instead, return appropriate error codes
so that the calling program can close gracefully (without locked files or leaked
memory). The NWTC Subroutine Library includes specific error code parameters
that you can use.

o Consider using the /traceback compiler option so that users know where the error
occurred if the program does crash.

• Include the PRIVATE statement in your modules if possible. This statement makes the
routines and data defined in a module inaccessible to other modules unless they are
explicitly marked PUBLIC, reducing the chances of naming conflicts.

• Do not use GOTO statements.

• Do not use numeric statement labels.

• Do not use CONTINUE statements.

• Indent source lines in standard, logical ways (e.g., make sure IF and END IF statements
line up). We want to be able to easily read your code.

• Be very careful dealing with input and output files and writing messages to the screen.
Such operations are not thread safe.

o Do not use the PRINT * or WRITE(*,*) commands. Instead, call the WrScr()
subroutine in the NWTC Subroutine Library when you write to the screen. (This
keeps all of the writing to the screen in one place that can easily be modified.)

o If you work with files in your code, use parameters or variable names to specify
external I/O unit specifiers. This makes it easier to change the value if there is a
conflict with another module’s choice of unit specifiers. For example, use
 READ(MyUn, *, IOSTAT=IOS) VarName
instead of
 READ(15, *, IOSTAT=IOS) VarName

o To minimize duplication of I/O unit specifiers, use the NWTC Subroutine
Library’s GetNewUnit() subroutine.

• Be careful when comparing real numbers. Remember that real numbers are approximated
on computer systems and some numbers cannot be exactly represented. For example, do
not write
 IF (a == 1.0) THEN
because it won’t be true if “a” is stored as 0.999999 (which likely represents 1.0).
Instead, use the NWTC Subroutine Library’s EqualRealNos() function to compare two
real numbers:
 IF (EqualRealNos(a, 1.0)) THEN
This will ensure real numbers are compared in a consistent way that can be easily
modified if necessary.

22

• Whenever possible, loop through arrays in the correct order for your programming
language for optimized code. In Fortran, you should vary the left-most index fastest; for
example:

 DO J = 1,10
 DO I = 1,5
 Ary(I,J) = 10*J + I
 END DO
 END DO

Mixed Languages
Developers may choose to write modules for the FAST framework in C or C++, however the
glue code is written in Fortran. The glue code expects the subroutines defined in Table 1 to be
written in Fortran, but these subroutines can be “wrapper” routines that call the developer’s C or
C++ routines.

Derived data types should not be passed through the Fortran/C/C++ interface. The wrapper
routines have the responsibility of converting Fortran derived data types into a form that can be
passed to and understood by the C/C++ routines. It is left to the developer to decide the best
manner to do this within the wrapper code and the contributed modules.

One suggested method is to write the wrapper routines in Fortran, convert the derived data types
into buffers (one-dimensional arrays), and then pass these buffers into the corresponding C/C++
routine§§§. The buffers should be passed “by reference”, i.e., passed as addresses of the first
element of the array. (This is the default in Fortran.) On the C/C++ side, the corresponding
arguments should be defined as pointers. The C/C++ code may then populate its own data
structures from the data in the buffers. The automatically-generated pack/unpack subroutines
may be useful for packing and unpacking buffers within the Fortran wrapper subroutines.

Testing

As new modules are developed or existing NWTC CAE tools are modified, it is important to
verify results, check that unexpected side effects have been avoided, and validate (if possible).
When possible, individual parts of a code should be tested separately before integrating them
into a much larger code (particularly if you are working on a complicated algorithm). When the
software is complete, it is important to provide new tests so that future updates can test the new
features or modules as well.

Verification
When a new feature is added to software, the results must be compared to hand calculations,
results of other software, or other known solutions. This verification procedure builds confidence
that the developer has implemented the feature correctly. We recommend that verification results
be documented and published.

Validation
Validation is a difficult subject. It is subjective, probably expensive, and not always possible;
however, it can add value to predictive software. When validating predictive software against

§§§ Developers may wish to use Fortran’s ISO_C_BINDING intrinsic module.

23

test data, the answers will never agree. Errors in the code, simplifications in the model, the use of
inaccurate model properties, and even errors in the test data can cause discrepancies. Deciding
how close is good enough is a matter of personal opinion. The complexity of the software and
the level of its distribution should determine the necessary degree of accuracy, the number of
cases to compare, and the level of documentation.

While validation can be useful, it is not a substitute for verification. Validation is used to show
that the theory is valid; verification shows that the theory was implemented correctly in the
software. If you are not implementing new theory, the main focus of your testing should be
verification.

Version Checking
New versions of NWTC CAE tools and new modules must not harm existing capabilities. One
way to test this is to compare the results of the new version with the results from previous
versions for many different test cases. Researchers at the NWTC have developed DOS batch
files named “CertTest.bat” to perform this version checking (certification testing) for most of the
NWTC CAE tools.**** The CertTest.bat file runs the CAE tool for many test cases, compares the
new results with the results stored from a previous version, and writes differences to a file called
“CertTest.out.” Any differences must either be corrected or explained and verified (e.g. you
fixed a bug).

If you are modifying an existing NWTC CAE tool and believe that it is working properly, run the
CertTest.bat file. If you have made changes to any input file(s), you will first have to modify the
input files that CertTest.bat runs. We recommend that you first run the CertTest.bat file using an
executable compiled in debug mode with subscript bounds checking (this is usually enabled only
for debugging and not for final releases) to ensure that the sample cases never cause arrays to
exceed their limits. If the CertTest.bat results are satisfactory with the debugging version of the
code, run it again with code compiled in release mode.

Testing New Features
Each new module in the FAST framework must have a driver program that demonstrates how
the module should be used and that tests this smaller portion of the code. The driver program
should call every public subroutine in the module being tested, and it should have its own test
cases to compare with previous results, similar to the certification tests provided with NWTC
CAE tools.

If you have modified an existing NWTC CAE tool with a new output or feature, you should
provide capability to test your feature in future versions. Either modify an existing test case to
include the feature (making sure not to remove a test of any other existing feature), or create a
new test case. New test cases should be documented and added to the CertTest.bat file and
distributed with the software (added to the archive) for future version checking.

**** The NWTC currently does not have scripts for Linux systems.

24

Software Distribution

When software has been sufficiently tested, verified, and documented, the tool’s primary owner
may choose to distribute the software on the NWTC Design Tools web site (or other means). The
primary owner of the tool will determine the schedule for releasing a new version. See Appendix
D of this document for the steps that lead up to a release.

Software distributed to users as either alpha or beta versions must include the following
information:

• All of the source files (if you link with other software that is easily available on the
internet or that has licensing restrictions prohibiting redistribution, give specific
instructions for obtaining the necessary files instead)

• The input file(s) for the FAST Registry.

• Executable code or library (if applicable) for Windows® (Code must be able to be
compiled on Linux, but we do not require an executable code for Linux.)

• Name(s) and version(s) of all other codes the software uses and what compiler was used
to generate the executable code

• A file that indicates the order of compilation for the source files

• A driver program (see the “Testing New Features” section of this document for details)

• A change log that contains the full history of previously released versions (see the
“Documentation” section of this document for details)

• A user’s guide and theory manual (useful for alpha version, but required for beta versions
of software)

• Sample input files

• Sample test cases, including all files necessary to run them

• Output generated from the sample test cases

• A certification testing program (e.g., CertTest.bat) to compare user’s results from the
sample test cases with the output included in the software distribution. See the “Version
Checking” section of this document for details.

• A list of all files being distributed

• A list of known bugs or limitations

• Any other files that are useful to run, understand, or maintain the software
We recommend that you build an archive to save your results for distribution. We include a file
called “Archive.bat” in our distributions, and the script can be run from a command prompt in a

25

Windows® environment to create an archive using WinZip, the WinZip Self-Extractor, and the
WinZip Command Line Support Add-On for Windows.††††

You should check that the archive runs properly and contains all the necessary files. We
recommend that you also check that the sample test cases run on another computer.

After posting new software on the NWTC Design Tools web site, the tool’s primary owner (or
his/her designee) should announce the release on the NWTC Computer-Aided Engineering
Software Tools forum and may wish to send an email to people who have downloaded previous
versions of the software. (Appendix D contains specific details for announcing the release.) We
recommend that users subscribe to the forum’s announcement topic so they are aware of new
releases.

Ongoing Improvements to This Document

At the time of this writing, several items are incomplete or are a work in progress. Items that are
currently incomplete may cause this document to be updated.

• Existing FAST source code is not fully converted to this framework.

• The ModMesh and ModMesh_Types module have not yet been fully tested, and the code
to map the meshes has not been implemented.

• The unpack routines may need to be modified to accommodate the ModMesh data
structures.

• Restrictions on SIBLING meshes and relationships between meshes and Jacobians may
be added.

• An appendix to aid module developers in categorizing their data into inputs, outputs,
states (continuous, discrete, constraint, and other), and parameters is being developed.

• Recommendations for FAST input and output files may be updated.

• Guidance on coupling FAST modules to commercial software (e.g., commercial software
as the driver program) may be provided.

• Guidance on time integration methods may be provided.

• The Licensing may change to GPL 2.0 instead of GPL 3.0.

†††† Because almost all of our development to date has been on Windows®, we do not currently have scripts for
Linux. We plan to also distribute files in the TAR (or tar.gz) format for Linux/Mac users.

26

References
1 Jonkman, J. M. and Buhl Jr., M. L. FAST User’s Guide. NREL/EL-500-38230. Golden, CO:
National Renewable Energy Laboratory, August 2005. Accessed June 13, 2012:
http://wind.nrel.gov/designcodes/simulators/fast/FAST.pdf

2 Jonkman, J. M. FAST Theory Manual. NREL/TP-500-32449. Golden, CO: National Renewable
Energy Laboratory (forthcoming).

3 Jonkman, J. M. “The New Modularization Framework for the FAST Wind Turbine CAE Tool.”
51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace
Exposition, 7–10 January 2013, Grapevine (Dallas/Ft. Worth Region), TX [online proceedings].
URL: http://arc.aiaa.org/doi/pdf/10.2514/6.2013-202. AIAA-2013-0202. Reston, VA: American
Institute of Aeronautics and Astronautics, January 2013; NREL/CP-5000-57228. Golden, CO:
National Renewable Energy Laboratory.

4 “The GNU General Public License v3.0” Free Software Foundation, Inc. Accessed June 23,
2012: http://www.gnu.org/licenses/gpl-3.0.html

5 “Apache Subversion.” The Apache Software Foundation, 2012. Accessed June 18, 2012:
http://subversion.apache.org

6 Buhl, M.L., Jr. “NWTC Design Codes (NWTC Subroutine Library).” National Renewable
Energy Laboratory, Last modified February 21, 2012. Accessed June 16 2012:
http://wind.nrel.gov/designcodes/miscellaneous/nwtc_subs

7 INCITS/ISO/IEC 1539-1:2004 “Information Technology – Programming Languages –
Fortran – Part 1: Base Language.”

8“RabbitVCS.” The RabbitVCS Team, 2011. Accessed June 19, 2012: http://rabbitvcs.org

9 “TortoiseSVN.” The TortoiseSVN Team, 2012. Accessed June 19, 2012: http://tortoisesvn.net

http://wind.nrel.gov/designcodes/simulators/fast/FAST.pdf
http://arc.aiaa.org/doi/pdf/10.2514/6.2013-202
http://subversion.apache.org/
http://wind.nrel.gov/designcodes/miscellaneous/nwtc_subs
http://rabbitvcs.org/
http://tortoisesvn.net/

27

For Further Reading

Adams, J. C.; Brainerd, W. S.; Hendrickson, R. A.; Maine, R. E.; Martin, J. T.; and Smith, B. T.
The Fortran 2003 Handbook: The Complete Syntax, Features and Procedures. 1st edition.
Springer, 2009.

Brainerd, W. S. Guide to Fortran 2003 Programming. 1st edition. Springer, 2009.

Buhl, M. L., Jr.; Green, H. J. Software Quality-Control Guidelines for Codes Developed for the
NWTC. NREL/TP-500-26207. Golden, CO: National Renewable Energy Laboratory, 1999.
Accessed June 13, 2012: http://wind.nrel.gov/designcodes/papers/TP-500-26207.pdf

Buhl, M. L., Jr. Code Maintenance. Golden, CO: National Renewable Energy Laboratory, 2005.
Accessed June 13, 2012: http://windinternal.nrel.gov/tips/CodeMaintenance.pdf (internal only)

Chapman, S. J. Fortran 95/2003 for Scientists and Engineers. 3rd edition. McGraw-Hill, 2008.

Collins-Sussman, B.; Fitzpatrick, B.W.; and Pilato, C.M. Version Control with Subversion.
O’Reilly Media, 2004. Accessed June 18. 2012: http://svnbook.red-bean.com

Gasmi, A.; Sprague, M. A.; Jonkman, J. M.; and Jones, W. B. “Numerical Stability and
Accuracy of Temporally Coupled Multi-Physics Modules in Wind-Turbine CAE Tools.” 51st
AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace
Exposition, 7–10 January 2013, Grapevine (Dallas/Ft. Worth Region), TX [online proceedings].
URL: http://arc.aiaa.org/doi/pdf/10.2514/6.2013-203. AIAA-2013-0203. Reston, VA: American
Institute of Aeronautics and Astronautics, January 2013; NREL/CP-500-57298. Golden, CO:
National Renewable Energy Laboratory.

http://wind.nrel.gov/designcodes/papers/TP-500-26207.pdf
http://windinternal.nrel.gov/tips/CodeMaintenance.pdf
http://svnbook.red-bean.com/
http://arc.aiaa.org/doi/pdf/10.2514/6.2013-203

28

Appendix A: Working With Subversion

The two key objects that SVN manages for a developer are the repository itself and the
developer’s working copy of the code.

SVN Repositories
The SVN repository stores files and directories for a project and is like an ordinary file system
except that SVN also remembers every change that was made to the repository, stretching back
to when the project was first imported into SVN. Each revision of the code is recorded and
tagged with a unique sequentially increasing revision number, which allows a user to refer to
and—if necessary—retrieve any specific revision of the code. Revisions may also be referred to
using dates or user-specified tags, a more easily remembered string that can be assigned to refer
to a particular revision. The NWTC uses tags to label specific revisions of the code that
correspond to releases of a code. Where no revision number is specified, the SVN operation will
apply to the most recent revision of the code, sometimes called the “head of the repository” or
“top-of-trunk” (TOT).

The repository is maintained by an SVN server program, which runs on the computer that stores
the SVN code repository. The server is set up and managed by system administrators.
Developers never work with the SVN server directly; rather, developers use an SVN client
program that communicates over the network with the SVN server. The SVN client on Linux
systems is the svn command with its options and arguments. (RabbitVCS8 also provides free
graphical tools to access SVN on Linux.) TortoiseSVN9 is a free SVN client for Windows; it
provides a graphical interface that can be accessed by right-clicking the Desktop background or
specific files and directories being managed under SVN. The underlying SVN operations are the
same under both Linux and Windows clients.

Working Copies
A working copy is an SVN-managed mirror copy of a project’s files and directories in the
repository on the user’s computer. These look just like other files and directories except that
they’re managed by SVN. Most SVN commands must refer to an SVN working copy to have
any effect. Issuing an SVN command in a directory that is not a working copy will generate an
error message:

% svn status
svn: warning: '.' is not a working copy

Each directory of a working copy will contain a subdirectory named .svn*. The contents of
these .svn directories is not important to the user (do not modify them), but their existence
indicates that a directory and its contents are part of an SVN working copy and not just a normal
set of files on the computer. On Windows, the TortoiseSVN client will mark the icons for
working copies with a check in a green dot or an exclamation point in red dot, which also

* The dot at the beginning of the directory name usually prevents it from being listed. To list these directories under
Linux, use ls with the -a option; under Windows, set the folder view options to show hidden files.

29

indicates whether the working copy has been modified with respect to the repository on the SVN
server (Figure 4†).

Workflow
The process for using SVN is “copy-modify-merge.” That is, a user checks out a working copy
of the project files from the repository, works on this local copy, and then, when ready, merges
the resulting changes back into the repository. In the meantime, merges by other users working
on the project may have altered the repository. SVN handles the mechanics of the version control
process, such as detecting changes that conflict.

SVN has no knowledge of the contents or meaning of the files and directories it manages. Other
aspects of version control, such as how to actually resolve conflicting merges and deciding when
a code change is allowed to be merged back in to the repository, require human participation.
The NWTC has developed some policies to deal with some of these issues. Please refer to
Appendix B and Appendix C of this document for further details.

Developers use an SVN client program on their local machine to check out all or part of the
repository as a working copy, which they can modify as desired without any effect on the code in
the repository. The repository is only modified when a developer commits part or all of the
working copy back into the repository.

Your changes go back into the repository when you commit part or all of your working copy
back to the repository. It is only at this point that the repository is modified and a new TOT is
created with a new and unique revision number.

In the meantime, you can (and should) update your working copy to keep it current with changes
other developers are committing to the repository. You can update with respect to the TOT (the
current state of the repository) or you can supply a date or revision number in the past and SVN
will update your working copy to reflect the state of the repository then. It may occur that
another developer’s commit changes a line or set of lines in the repository that you have also
changed in your working copy. When you update your working copy, SVN checks for and
reports any such conflicts. SVN will not allow you to commit the conflicted part of the working
copy. It is up to you (and the other developer) to resolve the conflict, perhaps by editing your
working copy to accept the other developer’s changes, or by working out a different solution
with the other developer.

† The names of the folders shown in Figure 4 are incidental. Working copies do not have to be named “working
copy”.

Figure 4. Example Windows® icons modified by TortoiseSVN to indicate the status of

working directories

30

Typical SVN Operations
Developers use an SVN client program on their local machine to access and make changes to the
repository. There are a large number of SVN operations, but a typical user developing and
contributing code would use this small and relatively simple subset:

• svn checkout creates a working copy of a repository on the user’s local file system.
It is necessary to check out a particular working copy only once.

• svn info provides basic information about a working copy such as the revision
number of the working copy and the URL (web address) for the repository in which the
working copy is versioned.

• svn status provides the state of the working copy with respect to the repository.
This command will show any files that have been modified in the working copy.

• svn diff shows the differences between a file or files in the working copy relative to
the repository.

• svn update brings the working copy up to date with respect to the repository, or
reports conflicts that need to be resolved before that can happen.

• svn add marks a file in the working copy to be added to the repository on the next
commit, adding it only to the latest revision (and onward).

• svn delete marks a file in the working copy to be removed from the repository on
the next commit, removing the file only from the latest revision (and onward).

• svn commit causes the non-conflicting changes to the user’s working copy to be
stored in the repository. The revision number of the repository will be incremented by
one, reflecting this new top of the trunk.

• svn copy is used to tag the top of the trunk with an easy-to-remember name that can
be used to retrieve the revision.

The copy command has other uses, along with other SVN commands for managing and merging
branches of the repository. For this and other more advanced topics, consult SVN documentation
and tutorials.

The First Time Through
The work you do in developing a CAE tool will be on a working copy you have checked out
from the SVN repository. If you are checking out a working copy for the first time, you will
issue the SVN checkout command‡. On Linux, this will be at the command line using svn
checkout (Figure 5).

On Windows using TortoiseSVN, right-click on the Desktop and select <SVN Checkout …>
from the pop-up menu. The Checkout window (Figure 6) will allow you to enter the URL for the
trunk of the repository and to enter the name to give to the top-level directory of the working
copy (if you want a different name than trunk). Click OK and the working copy will appear on
your local machine with the name and location you specify (Figure 7).

‡ The checkout command can be shortened to co.

31

In an Existing Working Copy
Until you are ready to start integrating your copy of the code with what is in the SVN repository,
working with the SVN Working Copy of the code is no different from working with any local set
of files and directories. The version control process comes into play once you have made
changes and are ready to incorporate these back into the repository.

Get the Go Ahead.
The first step is determining that you are at this point. That is, are your changes ready to go into
the repository? If the code worked before, does it still (however that’s determined)? Have you

Figure 7. Example results on Windows®

after checkout using TortoiseSVN.

Figure 6. The TortoiseSVN checkout window.

$ svn co https://windsvn.nrel.gov/HydroDyn/svn/trunk HydDyn
 <output omitted>
Checked out revision 1.
$ ls -ld HydDyn
drwxr-xr-x 6 jmichala jmichala 4096 Jan 16 15:29 HydDyn
$ ls -la HydDyn
total 80
drwxr-xr-x 6 jmichala jmichala 4096 Jan 16 15:29 .
drwxr-xr-x 77 jmichala jmichala 4096 Jan 16 15:29 ..
-rw-r--r-- 1 jmichala jmichala 572 Jan 16 15:29 ArcFiles.txt
-rw-r--r-- 1 jmichala jmichala 1161 Jan 16 15:29 Archive.bat
-rw-r--r-- 1 jmichala jmichala 7384 Jan 16 15:29 ChangeLog.txt
-rw-r--r-- 1 jmichala jmichala 117 Jan 16 15:29 Disclaimer.txt
-rw-r--r-- 1 jmichala jmichala 36656 Jan 16 15:29 HydroDynOutListParameters.xlsx
drwxr-xr-x 4 jmichala jmichala 4096 Jan 16 15:29 Samples
drwxr-xr-x 3 jmichala jmichala 4096 Jan 16 15:29 Source
drwxr-xr-x 6 jmichala jmichala 4096 Jan 16 15:29 .svn
drwxr-xr-x 5 jmichala jmichala 4096 Jan 16 15:29 UtilityCodes

Figure 5. Example results from the SVN checkout command on Linux. Notice that the files and
directories are no different from what you normally see except that SVN has included its own .svn

directory as a hidden file.

https://windsvn.nrel.gov/HydroDyn/svn/trunk

32

consulted with other developers and those responsible for the module you are working on and do
they concur? These are more policy issues than SVN mechanics. (See Appendix B).

Assuming the answers are yes, the best practice steps for putting changes from a working copy
back into the repository are update, resolve, update again, commit. The commit should never
occur until an update comes back showing only your proposed changes without any conflicts.
SVN is good at ensuring that commits are done atomically—that is, by only one user at a time.
Even so, it is best if other developers working on the code in the repository know you are
committing and wait for an all clear from you before making any commits of their own.

Status of the Working Copy.
Find out what it is you will be committing. At the beginning of a work cycle, before you have
made any changes to code in the repository, there will not be anything to commit. The svn status
command will return without generating any output, meaning that the working copy is up to date
with respect to the repository. Here, the svn status command is issued in the source directory of
a clean (unmodified) HydroDyn working copy:

$ svn status Source
$

On Windows with TortoiseSVN, the icon for the Source folder will have a green circle with a
check mark, as shown in Figure 4. However, if changes have been made to files in the directory,
the status command will report them:

[jmichala@rrlogin1 HydDyn]$ svn status Source
M Source/Waves.f90

The ‘M’ to the left of the file name in the status listing means the file has been modified. Files
might also be listed with a ‘?’, which means that the file is unknown to SVN (it is not a copy of
anything in the repository). Or it might be listed with a ‘!’, meaning that there’s a file stored in
the repository that is missing in the working copy. On Windows, modifications are indicated
with a red circle on the icon (see Figure 4).

To see what has changed in the code, you can use the svn diff command:

$ svn diff Source
Index: Source/Waves.f90
===
--- Source/Waves.f90 (revision 1)
+++ Source/Waves.f90 (working copy)
@@ -1,5 +1,6 @@
 MODULE Waves

+! a sample change, adding a line to MODULE Waves in Waves.f90

 ! This MODULE stores variables and routines associated with incident
 ! waves and current.

The output of the SVN diff command is similar to the output of the Unix diff utility. The added
line in the change above is indicated with a ‘+’. A few lines before and after the change are
included for context. On Windows, right-clicking and selecting <Diff> from the pull-down
menu displays the differences graphically in a TortoiseMerge window (Figure 8). Note that

33

TortoiseMerge does not difference whole directories, so it was necessary to change into the
source folder and right-click the Waves.f90 file that changed (also indicated with a red circle in
its icon).

What is New in the Repository?
While you were working in your working copy, other developers were busy in their working
copies. If they have committed their changes to the repository before you, the repository will not
be the same as when you started with your clean working copy. The possibility of this situation is
one of the main reasons you are using a version control system in the first place. The SVN
update command brings your working copy up to date and checks to make sure that none of your
changes will conflict with a change another developer has made in the meantime.

Gotchas
Avoid moving SVN working copies between Windows and Linux development platforms. End
of line markers in text files of a working copy checked out from Subversion on a Windows
system will differ from those in files checked out on Linux system. In addition to creating
formatting problems when editing, this will appear as many spurious modifications to the
working copy when updating, differencing, or committing with SVN from the other system. To
move code to a different platform, check in your changes (to a branch, if necessary) and then
check out again on the other system.

After importing, the copy of the code you just imported into SVN is not a working copy.
Working copies are only ever created by the svn checkout command and will contain a .svn
bookkeeping subdirectory in each of the working copy subdirectories (Linux) or a green or red
dot on their icon (TortoiseSVN on Windows).

Figure 8. TortoiseSVN > Diff… opens TortoiseMerge to compare and merge changes in text files.

34

Working with Branches
SVN allows users to make copies of the development trunk called branches and separately
maintain those branches under revision control until the work is ready to be merged back onto
the trunk. This allows developers to work with and commit to their own SVN working copy of
the trunk as they wish without interference or encumbrance from the policy for the main trunk
(see Appendix B). The policy would apply when the branch copy is merged back to the main
trunk. Under the Linux SVN client, creating a branch is done with the svn copy command.
Under TortoiseSVN, there are separate Branch/Tag and Merge options in the menu that appears
when right-clicking a file or directory in an SVN working copy. A working copy’s association
with the trunk version or a branch copy on the server is controlled using the svn switch
command (same for both Linux and TortoiseSVN clients).

Additional Information
SVN tutorial information and links to additional documentation may be found on http://wind-
dev.nrel.gov (internal) or http://www.michalakes.us/SVN_presentation.pdf (external). The “For
Further Reading” section of this document also lists some resources.

http://wind-dev.nrel.gov/
http://wind-dev.nrel.gov/
http://www.michalakes.us/SVN_presentation.pdf

35

Appendix B: NWTC CAE Tool Development Policy

The following policy outlines what is expected of all NWTC CAE tool developers.

• CAE tools under development are stored on NREL servers that can be accessed using
Subversion. The repository for each tool has three directories: trunk, branches, and tags.

• The trunk must always be stable. No commit or merge shall break its functionality.

• Each tool has a primary owner who is responsible for the trunk version. The trunk may
not be modified without the consent of the primary code owner.

• Development must be done in branches (each developer may make a branch copy of the
most recent trunk version for making their changes).

• Branches must pass all certification tests prior to being merged back into the trunk. The
developer must create additional tests if existing tests do not adequately evaluate features
being developed.

• The tool’s primary owner is responsible for reviewing changes from the branches and
merging approved branches back into the trunk. The primary owner may delegate this
responsibility if desired.

• After the trunk is updated (branches merged into the trunk), all certification tests must be
rerun. This step is to check that changes made in the review/approval process and any
conflicts in the merge process were resolved appropriately.

• Certification tests must be updated to test new features and to test issues that have been
found while debugging code.

• Each time a tool is released—either as an alpha or beta version—a copy of the trunk is
tagged using the NWTC version number. This provides a snapshot of the tool in the form
it was released.

36

Appendix C: Recommended Practices for Code Development
Using Subversion

Keep the following recommended practices in mind while you are developing code:

• Check your code back into Subversion branches on a regular basis (daily or multiple
times a week when doing full time development). This way you can take advantage of
Subversion for rolling back to previous versions of the code when something you just
added doesn’t work as expected.

• Developers should partition major code development efforts into reasonably sized
projects that can be checked into the trunk separately. We do not want several years’
worth of code to be merged back into the trunk, because the trunk may have changed
dramatically during that time.

• Code should be merged into the trunk whenever problems have been fixed or new
features have been added and the code is stable.

• Keep regular backups of your code. While our subversion repositories are backed up
daily, you should not count on that alone. In the unlikely event that something happened
to the repositories, it could be days before they are back online.

• After a branch is merged back into the trunk, it should be deleted. This will remove
clutter from the repository and will allow other developers to see what branches are
currently being developed. If you need to make more changes after the branch has been
merged into the trunk, start a new branch.

• Regularly communicate with other developers. Usually, the earlier you spot coding
conflicts in the development process, the easier it is to resolve them. Be considerate of
other developers’ programming goals.

37

Appendix D: Steps for Maintaining and Developing Software

Follow the steps below for maintaining and developing software:

1. Plan: Create a plan of the changes and/or additions you intend to make. Write this
information in a document (you can use this when writing the theory manual in step 10).
Discuss the plan with the CAE tool’s primary owner and other developers that may be
affected. See the “Planning” section of this document for details.

2. Create a branch in the Subversion repository: All development work must be done in
branches to ensure that the trunk is always stable and that the primary owner has control
of the state of the trunk.

3. Change the version number: The first thing you should change is the version number
and date.

4. Make changes: Make sure you comment your changes well, both in the source code and
in the change log. See the “Documentation” section of this document for details.

5. Debug: Create an executable program in debug mode, making the compiler option to
check array and string bounds is enabled (use /check:bounds).

6. Test: Run CertTest.bat and other tests to verify that your changes have done only what
they were supposed to do. Create new test cases to check new features. Return to step 4
and fix the source code as necessary.

7. Compile the source code for release: Compile the code with optimizations and without
all the debugging options (in Intel Visual Fortran, you can use Release mode), but keep
the /traceback option so that users have some information on the error if your program
crashes ungracefully.

8. Test again: Run CertTest.bat and other tests to verify that the new compiled code did
not cause any differences. Return to step 4 if it did.

9. Update the test results: When the optimized executable works satisfactorily, update the
test results. You can do this by running the Update.bat script included with NWTC
software. (Results from your new version will overwrite the results from the old
version.)

10. Update the user’s guide and/or theory manual: This step may be completed at a
different stage in the process, but it must be completed before the code is released as a
beta version.

11. Commit changes to the Subversion branch: We recommend that you update and
commit your changes to the SVN branch on a regular basis. However, it must be
checked back into the branch before step 12.

12. Notify the CAE tool’s primary owner: Before accepting your changes, the owner may
request that you modify your branch to comply with NWTC Programming Policies or to
avoid conflicts with other development.

A. Once accepted, the tool owner (or his/her designee) will merge the branch back
into the trunk.

38

B. After the merge, the tool owner will rerun the certification tests to ensure it was
completed successfully. If successful, the test results on the trunk will be updated
with new results.

C. Your branch may be deleted after it is merged back into the trunk.

13. Create an archive from the SVN trunk: See the “Software Distribution” section in this
document for more details. NWTC CAE tools are distributed with a file called
“Archive.bat” that can create an archive from a list of files.

14. Distribute the archive: Send your archive to desired recipients. Ask for their feedback
and return to step 1 with any modifications in a new alpha version.

15. Update the web site: The primary owner of each tool is responsible for updating the
NWTC web site with new versions of the code. The timing (and content) of this step is
up to the tool’s primary owner.

16. Announce the release: The primary owner of each tool (or his/her designee) should
send an email to people who have downloaded previous version of the tool (or similar
NWTC software, if this is a new tool)* and should post an announcement at
http://wind.nrel.gov/forum/wind/viewtopic.php?f=4&t=652.†

* Please see Bonnie Jonkman for a list of email addresses of people who have downloaded NWTC CAE tools (note
that it may take several days to respond to your request). This list is unavailable to outside contributors.
† This topic is locked to prevent unauthorized posting, so you will have to see an account administrator to unlock it
before posting your announcement.

http://wind.nrel.gov/forum/wind/viewtopic.php?f=4&t=652

39

Appendix E: Module Template
!**
! The ModuleName and ModuleName_Types modules make up a template for creating user-defined calculations in the FAST Modularization
! Framework. ModuleNames_Types will be auto-generated based on a description of the variables for the module.
!
! "ModuleName" should be replaced with the name of your module. Example: HydroDyn
! "ModName" (in ModName_*) should be replaced with the module name or an abbreviation of it. Example: HD
!..
! LICENSING
! Copyright (C) 2012, 2013 National Renewable Energy Laboratory
!
! This file is part of ModuleName.
!
! ModuleName is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as
! published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
!
! This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
! of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along with ModuleName.
! If not, see <http://www.gnu.org/licenses/>.
!
!**
MODULE ModuleName

 USE ModuleName_Types
 USE NWTC_Library

 IMPLICIT NONE

 PRIVATE

 TYPE(ProgDesc), PARAMETER :: ModName_Ver = ProgDesc('ModuleName', 'v1.02.00', '22-March-2013')

 ! Public Subroutines ...

 PUBLIC :: ModName_Init ! Initialization routine
 PUBLIC :: ModName_End ! Ending routine (includes clean up)

 PUBLIC :: ModName_UpdateStates ! Loose coupling routine for solving for constraint states, integrating
 ! continuous states, and updating discrete states
 PUBLIC :: ModName_CalcOutput ! Routine for computing outputs

 PUBLIC :: ModName_CalcConstrStateResidual ! Tight coupling routine for returning the constraint state residual
 PUBLIC :: ModName_CalcContStateDeriv ! Tight coupling routine for computing derivatives of continuous states
 PUBLIC :: ModName_UpdateDiscState ! Tight coupling routine for updating discrete states

40

 PUBLIC :: ModName_JacobianPInput ! Routine to compute the Jacobians of the output (Y), continuous- (X), discrete-
 ! (Xd), and constraint-state (Z) functions all with respect to the inputs (u)
 PUBLIC :: ModName_JacobianPContState ! Routine to compute the Jacobians of the output (Y), continuous- (X), discrete-
 ! (Xd), and constraint-state (Z) functions all with respect to the continuous
 ! states (x)
 PUBLIC :: ModName_JacobianPDiscState ! Routine to compute the Jacobians of the output (Y), continuous- (X), discrete-
 ! (Xd), and constraint-state (Z) functions all with respect to the discrete
 ! states (xd)
 PUBLIC :: ModName_JacobianPConstrState ! Routine to compute the Jacobians of the output (Y), continuous- (X), discrete-
 ! (Xd), and constraint-state (Z) functions all with respect to the constraint
 ! states (z)

CONTAINS
!--
SUBROUTINE ModName_Init(InitInp, u, p, x, xd, z, OtherState, y, Interval, InitOut, ErrStat, ErrMsg)
! This routine is called at the start of the simulation to perform initialization steps.
! The parameters are set here and not changed during the simulation.
! The initial states and initial guess for the input are defined.
!..

 TYPE(ModName_InitInputType), INTENT(IN) :: InitInp ! Input data for initialization routine
 TYPE(ModName_InputType), INTENT(OUT) :: u ! An initial guess for the input; input mesh must be defined
 TYPE(ModName_ParameterType), INTENT(OUT) :: p ! Parameters
 TYPE(ModName_ContinuousStateType), INTENT(OUT) :: x ! Initial continuous states
 TYPE(ModName_DiscreteStateType), INTENT(OUT) :: xd ! Initial discrete states
 TYPE(ModName_ConstraintStateType), INTENT(OUT) :: z ! Initial guess of the constraint states
 TYPE(ModName_OtherStateType), INTENT(OUT) :: OtherState ! Initial other/optimization states
 TYPE(ModName_OutputType), INTENT(OUT) :: y ! Initial system outputs (outputs are not calculated;
 ! only the output mesh is initialized)
 REAL(DbKi), INTENT(INOUT) :: Interval ! Coupling interval in seconds: the rate that
 ! (1) ModName_UpdateStates() is called in loose coupling &
 ! (2) ModName_UpdateDiscState() is called in tight coupling.
 ! Input is the suggested time from the glue code;
 ! Output is the actual coupling interval that will be used
 ! by the glue code.
 TYPE(ModName_InitOutputType), INTENT(OUT) :: InitOut ! Output for initialization routine
 INTEGER(IntKi), INTENT(OUT) :: ErrStat ! Error status of the operation
 CHARACTER(*), INTENT(OUT) :: ErrMsg ! Error message if ErrStat /= ErrID_None

 ! local variables

 INTEGER(IntKi) :: NumOuts

 ! Initialize variables

 ErrStat = ErrID_None
 ErrMsg = ""

41

 NumOuts = 2

 ! Initialize the NWTC Subroutine Library

 CALL NWTC_Init()

 ! Display the module information

 CALL DispNVD(ModName_Ver)

 ! Define parameters here:

 p%DT = Interval

 ! Define initial system states here:

 x%DummyContState = 0
 xd%DummyDiscState = 0
 z%DummyConstrState = 0
 OtherState%DummyOtherState = 0

 ! Define initial guess for the system inputs here:

 u%DummyInput = 0

 ! Define system output initializations (set up mesh) here:
 ALLOCATE(y%WriteOutput(NumOuts), STAT = ErrStat)
 IF (ErrStat/= 0) THEN
 ErrStat = ErrID_Fatal
 ErrMsg = 'Error allocating output header and units arrays in ModName_Init'
 RETURN
 END IF

 y%DummyOutput = 0
 y%WriteOutput = 0

 ! Define initialization-routine output here:
 ALLOCATE(InitOut%WriteOutputHdr(NumOuts), InitOut%WriteOutputUnt(NumOuts), STAT = ErrStat)
 IF (ErrStat/= 0) THEN
 ErrStat = ErrID_Fatal
 ErrMsg = 'Error allocating output header and units arrays in ModName_Init'
 RETURN
 END IF

42

 InitOut%WriteOutputHdr = (/ 'Time ', 'Column2' /)
 InitOut%WriteOutputUnt = (/ '(s)', '(-)' /)

 ! If you want to choose your own rate instead of using what the glue code suggests, tell the glue code the rate at which
 ! this module must be called here:

 !Interval = p%DT

END SUBROUTINE ModName_Init
!--
SUBROUTINE ModName_End(u, p, x, xd, z, OtherState, y, ErrStat, ErrMsg)
! This routine is called at the end of the simulation.
!..

 TYPE(ModName_InputType), INTENT(INOUT) :: u ! System inputs
 TYPE(ModName_ParameterType), INTENT(INOUT) :: p ! Parameters
 TYPE(ModName_ContinuousStateType), INTENT(INOUT) :: x ! Continuous states
 TYPE(ModName_DiscreteStateType), INTENT(INOUT) :: xd ! Discrete states
 TYPE(ModName_ConstraintStateType), INTENT(INOUT) :: z ! Constraint states
 TYPE(ModName_OtherStateType), INTENT(INOUT) :: OtherState ! Other/optimization states
 TYPE(ModName_OutputType), INTENT(INOUT) :: y ! System outputs
 INTEGER(IntKi), INTENT(OUT) :: ErrStat ! Error status of the operation
 CHARACTER(*), INTENT(OUT) :: ErrMsg ! Error message if ErrStat /= ErrID_None

 ! Initialize ErrStat

 ErrStat = ErrID_None
 ErrMsg = ""

 ! Place any last minute operations or calculations here:

 ! Close files here:

 ! Destroy the input data:

 CALL ModName_DestroyInput(u, ErrStat, ErrMsg)

 ! Destroy the parameter data:

43

 CALL ModName_DestroyParam(p, ErrStat, ErrMsg)

 ! Destroy the state data:

 CALL ModName_DestroyContState(x, ErrStat, ErrMsg)
 CALL ModName_DestroyDiscState(xd, ErrStat, ErrMsg)
 CALL ModName_DestroyConstrState(z, ErrStat, ErrMsg)
 CALL ModName_DestroyOtherState(OtherState, ErrStat, ErrMsg)

 ! Destroy the output data:

 CALL ModName_DestroyOutput(y, ErrStat, ErrMsg)

END SUBROUTINE ModName_End
!--
SUBROUTINE ModName_UpdateStates(t, n, Inputs, InputTimes, p, x, xd, z, OtherState, ErrStat, ErrMsg)
! Loose coupling routine for solving constraint states, integrating continuous states, and updating discrete states.
! Continuous, constraint, and discrete states are updated to values at t + Interval.
!..

 REAL(DbKi), INTENT(IN) :: t ! Current simulation time in seconds
 INTEGER(IntKi), INTENT(IN) :: n ! Current step of the simulation: t = n*Interval
 TYPE(ModName_InputType), INTENT(IN) :: Inputs(:) ! Inputs at InputTimes
 REAL(DbKi), INTENT(IN) :: InputTimes(:) ! Times in seconds associated with Inputs
 TYPE(ModName_ParameterType), INTENT(IN) :: p ! Parameters
 TYPE(ModName_ContinuousStateType), INTENT(INOUT) :: x ! Input: Continuous states at t;
 ! Output: Continuous states at t + Interval
 TYPE(ModName_DiscreteStateType), INTENT(INOUT) :: xd ! Input: Discrete states at t;
 ! Output: Discrete states at t + Interval
 TYPE(ModName_ConstraintStateType), INTENT(INOUT) :: z ! Input: Constraint states at t;
 ! Output: Constraint states at t + Interval
 TYPE(ModName_OtherStateType), INTENT(INOUT) :: OtherState ! Other/optimization states
 INTEGER(IntKi), INTENT(OUT) :: ErrStat ! Error status of the operation
 CHARACTER(*), INTENT(OUT) :: ErrMsg ! Error message if ErrStat /= ErrID_None

 ! Local variables

 TYPE(ModName_ContinuousStateType) :: dxdt ! Continuous state derivatives at t
 TYPE(ModName_DiscreteStateType) :: xd_t ! Discrete states at t (copy)
 TYPE(ModName_ConstraintStateType) :: z_Residual ! Residual of the constraint state functions (Z)
 TYPE(ModName_InputType) :: u ! Instantaneous inputs
 INTEGER(IntKi) :: ErrStat2 ! Error status of the operation (secondary error)
 CHARACTER(LEN(ErrMsg)) :: ErrMsg2 ! Error message if ErrStat2 /= ErrID_None

44

 ! Initialize variables

 ErrStat = ErrID_None ! no error has occurred
 ErrMsg = ""

 ! This subroutine contains an example of how the states could be updated. Developers will
 ! want to adjust the logic as necessary for their own situations.

 ! Get the inputs at time t, based on the array of values sent by the glue code:

 CALL ModName_Input_ExtrapInterp(Inputs, InputTimes, u, t, ErrStat, ErrMsg)
 IF (ErrStat >= AbortErrLev) RETURN

 ! Get first time derivatives of continuous states (dxdt):

 CALL ModName_CalcContStateDeriv(t, u, p, x, xd, z, OtherState, dxdt, ErrStat, ErrMsg)
 IF (ErrStat >= AbortErrLev) THEN
 CALL ModName_DestroyContState(dxdt, ErrStat2, ErrMsg2)
 RETURN
 END IF

 ! Update discrete states:
 ! Note that xd [discrete state] is changed in ModName_UpdateDiscState() so xd will now contain values at t+Interval
 ! We'll first make a copy that contains xd at time t, which will be used in computing the constraint states
 CALL ModName_CopyDiscState(xd, xd_t, MESH_NEWCOPY, ErrStat, ErrMsg)

 CALL ModName_UpdateDiscState(t, n, u, p, x, xd, z, OtherState, ErrStat, ErrMsg)
 IF (ErrStat >= AbortErrLev) THEN
 CALL ModName_DestroyConstrState(Z_Residual, ErrStat2, ErrMsg2)
 CALL ModName_DestroyContState(dxdt, ErrStat2, ErrMsg2)
 CALL ModName_DestroyDiscState(xd_t, ErrStat2, ErrMsg2)
 RETURN
 END IF

 ! Solve for the constraint states (z) here:

 ! Iterate until the value is within a given tolerance.

 ! DO

 CALL ModName_CalcConstrStateResidual(t, u, p, x, xd_t, z, OtherState, Z_Residual, ErrStat, ErrMsg)

45

 IF (ErrStat >= AbortErrLev) THEN
 CALL ModName_DestroyConstrState(Z_Residual, ErrStat2, ErrMsg2)
 CALL ModName_DestroyContState(dxdt, ErrStat2, ErrMsg2)
 CALL ModName_DestroyDiscState(xd_t, ErrStat2, ErrMsg2)
 RETURN
 END IF

 ! z =

 ! END DO

 ! Integrate (update) continuous states (x) here:

 !x = function of dxdt and x

 ! Destroy local variables before returning

 CALL ModName_DestroyConstrState(Z_Residual, ErrStat2, ErrMsg2)
 CALL ModName_DestroyContState(dxdt, ErrStat2, ErrMsg2)
 CALL ModName_DestroyDiscState(xd_t, ErrStat2, ErrMsg2)

END SUBROUTINE ModName_UpdateStates
!--
SUBROUTINE ModName_CalcOutput(t, u, p, x, xd, z, OtherState, y, ErrStat, ErrMsg)
! Routine for computing outputs, used in both loose and tight coupling.
!..

 REAL(DbKi), INTENT(IN) :: t ! Current simulation time in seconds
 TYPE(ModName_InputType), INTENT(IN) :: u ! Inputs at t
 TYPE(ModName_ParameterType), INTENT(IN) :: p ! Parameters
 TYPE(ModName_ContinuousStateType), INTENT(IN) :: x ! Continuous states at t
 TYPE(ModName_DiscreteStateType), INTENT(IN) :: xd ! Discrete states at t
 TYPE(ModName_ConstraintStateType), INTENT(IN) :: z ! Constraint states at t
 TYPE(ModName_OtherStateType), INTENT(INOUT) :: OtherState ! Other/optimization states
 TYPE(ModName_OutputType), INTENT(INOUT) :: y ! Outputs computed at t (Input only so that mesh con-
 ! nectivity information does not have to be recalculated)
 INTEGER(IntKi), INTENT(OUT) :: ErrStat ! Error status of the operation
 CHARACTER(*), INTENT(OUT) :: ErrMsg ! Error message if ErrStat /= ErrID_None

 ! Initialize ErrStat

 ErrStat = ErrID_None
 ErrMsg = ""

46

 ! Compute outputs here:
 y%DummyOutput = 2.0_ReKi

 y%WriteOutput(1) = REAL(t,ReKi)
 y%WriteOutput(2) = 1.0_ReKi

END SUBROUTINE ModName_CalcOutput
!--
SUBROUTINE ModName_CalcContStateDeriv(t, u, p, x, xd, z, OtherState, dxdt, ErrStat, ErrMsg)
! Tight coupling routine for computing derivatives of continuous states
!..

 REAL(DbKi), INTENT(IN) :: t ! Current simulation time in seconds
 TYPE(ModName_InputType), INTENT(IN) :: u ! Inputs at t
 TYPE(ModName_ParameterType), INTENT(IN) :: p ! Parameters
 TYPE(ModName_ContinuousStateType), INTENT(IN) :: x ! Continuous states at t
 TYPE(ModName_DiscreteStateType), INTENT(IN) :: xd ! Discrete states at t
 TYPE(ModName_ConstraintStateType), INTENT(IN) :: z ! Constraint states at t
 TYPE(ModName_OtherStateType), INTENT(INOUT) :: OtherState ! Other/optimization states
 TYPE(ModName_ContinuousStateType), INTENT(OUT) :: dxdt ! Continuous state derivatives at t
 INTEGER(IntKi), INTENT(OUT) :: ErrStat ! Error status of the operation
 CHARACTER(*), INTENT(OUT) :: ErrMsg ! Error message if ErrStat /= ErrID_None

 ! Initialize ErrStat

 ErrStat = ErrID_None
 ErrMsg = ""

 ! Compute the first time derivatives of the continuous states here:

 dxdt%DummyContState = 0

END SUBROUTINE ModName_CalcContStateDeriv
!--
SUBROUTINE ModName_UpdateDiscState(t, n, u, p, x, xd, z, OtherState, ErrStat, ErrMsg)
! Tight coupling routine for updating discrete states
!..

 REAL(DbKi), INTENT(IN) :: t ! Current simulation time in seconds
 INTEGER(IntKi), INTENT(IN) :: n ! Current step of the simulation: t = n*Interval
 TYPE(ModName_InputType), INTENT(IN) :: u ! Inputs at t
 TYPE(ModName_ParameterType), INTENT(IN) :: p ! Parameters
 TYPE(ModName_ContinuousStateType), INTENT(IN) :: x ! Continuous states at t
 TYPE(ModName_DiscreteStateType), INTENT(INOUT) :: xd ! Input: Discrete states at t;

47

 ! Output: Discrete states at t + Interval
 TYPE(ModName_ConstraintStateType), INTENT(IN) :: z ! Constraint states at t
 TYPE(ModName_OtherStateType), INTENT(INOUT) :: OtherState ! Other/optimization states
 INTEGER(IntKi), INTENT(OUT) :: ErrStat ! Error status of the operation
 CHARACTER(*), INTENT(OUT) :: ErrMsg ! Error message if ErrStat /= ErrID_None

 ! Initialize ErrStat

 ErrStat = ErrID_None
 ErrMsg = ""

 ! Update discrete states here:

 xd%DummyDiscState = 0.0

END SUBROUTINE ModName_UpdateDiscState
!--
SUBROUTINE ModName_CalcConstrStateResidual(t, u, p, x, xd, z, OtherState, Z_residual, ErrStat, ErrMsg)
! Tight coupling routine for solving for the residual of the constraint state functions
!..

 REAL(DbKi), INTENT(IN) :: t ! Current simulation time in seconds
 TYPE(ModName_InputType), INTENT(IN) :: u ! Inputs at t
 TYPE(ModName_ParameterType), INTENT(IN) :: p ! Parameters
 TYPE(ModName_ContinuousStateType), INTENT(IN) :: x ! Continuous states at t
 TYPE(ModName_DiscreteStateType), INTENT(IN) :: xd ! Discrete states at t
 TYPE(ModName_ConstraintStateType), INTENT(IN) :: z ! Constraint states at t (possibly a guess)
 TYPE(ModName_OtherStateType), INTENT(INOUT) :: OtherState ! Other/optimization states
 TYPE(ModName_ConstraintStateType), INTENT(OUT) :: Z_residual ! Residual of the constraint state functions using
 ! the input values described above
 INTEGER(IntKi), INTENT(OUT) :: ErrStat ! Error status of the operation
 CHARACTER(*), INTENT(OUT) :: ErrMsg ! Error message if ErrStat /= ErrID_None

 ! Initialize ErrStat

 ErrStat = ErrID_None
 ErrMsg = ""

 ! Solve for the residual of the constraint state functions here:

 Z_residual%DummyConstrState = 0

END SUBROUTINE ModName_CalcConstrStateResidual
!++
! WE ARE NOT YET IMPLEMENTING THE JACOBIANS...

48

!++
!--
SUBROUTINE ModName_JacobianPInput(t, u, p, x, xd, z, OtherState, dYdu, dXdu, dXddu, dZdu, ErrStat, ErrMsg)
! Routine to compute the Jacobians of the output (Y), continuous- (X), discrete- (Xd), and constraint-state (Z) functions
! with respect to the inputs (u). The partial derivatives dY/du, dX/du, dXd/du, and DZ/du are returned.
!..

 REAL(DbKi), INTENT(IN) :: t ! Current simulation time in seconds
 TYPE(ModName_InputType), INTENT(IN) :: u ! Inputs at t
 TYPE(ModName_ParameterType), INTENT(IN) :: p ! Parameters
 TYPE(ModName_ContinuousStateType), INTENT(IN) :: x ! Continuous states at t
 TYPE(ModName_DiscreteStateType), INTENT(IN) :: xd ! Discrete states at t
 TYPE(ModName_ConstraintStateType), INTENT(IN) :: z ! Constraint states at t
 TYPE(ModName_OtherStateType), INTENT(INOUT) :: OtherState ! Other/optimization states
 TYPE(ModName_PartialOutputPInputType), INTENT(OUT), OPTIONAL :: dYdu ! Partial derivatives of output functions
 ! (Y) with respect to the inputs (u)
 TYPE(ModName_PartialContStatePInputType), INTENT(OUT), OPTIONAL :: dXdu ! Partial derivatives of continuous state
 ! functions (X) with respect to inputs (u)
 TYPE(ModName_PartialDiscStatePInputType), INTENT(OUT), OPTIONAL :: dXddu ! Partial derivatives of discrete state
 ! functions (Xd) with respect to inputs (u)
 TYPE(ModName_PartialConstrStatePInputType),INTENT(OUT), OPTIONAL :: dZdu ! Partial derivatives of constraint state
 ! functions (Z) with respect to inputs (u)
 INTEGER(IntKi), INTENT(OUT) :: ErrStat ! Error status of the operation
 CHARACTER(*), INTENT(OUT) :: ErrMsg ! Error message if ErrStat /= ErrID_None

 ! Initialize ErrStat

 ErrStat = ErrID_None
 ErrMsg = ""

 IF (PRESENT(dYdu)) THEN

 ! Calculate the partial derivative of the output functions (Y) with respect to the inputs (u) here:

 dYdu%DummyOutput%DummyInput = 0

 END IF

 IF (PRESENT(dXdu)) THEN

 ! Calculate the partial derivative of the continuous state functions (X) with respect to the inputs (u) here:

 dXdu%DummyContState%DummyInput = 0

 END IF

 IF (PRESENT(dXddu)) THEN

49

 ! Calculate the partial derivative of the discrete state functions (Xd) with respect to the inputs (u) here:

 dXddu%DummyDiscState%DummyInput = 0

 END IF

 IF (PRESENT(dZdu)) THEN

 ! Calculate the partial derivative of the constraint state functions (Z) with respect to the inputs (u) here:

 dZdu%DummyConstrState%DummyInput = 0

 END IF

END SUBROUTINE ModName_JacobianPInput
!--
SUBROUTINE ModName_JacobianPContState(t, u, p, x, xd, z, OtherState, dYdx, dXdx, dXddx, dZdx, ErrStat, ErrMsg)
! Routine to compute the Jacobians of the output (Y), continuous- (X), discrete- (Xd), and constraint-state (Z) functions
! with respect to the continuous states (x). The partial derivatives dY/dx, dX/dx, dXd/dx, and DZ/dx are returned.
!..

 REAL(DbKi), INTENT(IN) :: t ! Current simulation time in seconds
 TYPE(ModName_InputType), INTENT(IN) :: u ! Inputs at t
 TYPE(ModName_ParameterType), INTENT(IN) :: p ! Parameters
 TYPE(ModName_ContinuousStateType), INTENT(IN) :: x ! Continuous states at t
 TYPE(ModName_DiscreteStateType), INTENT(IN) :: xd ! Discrete states at t
 TYPE(ModName_ConstraintStateType), INTENT(IN) :: z ! Constraint states at t
 TYPE(ModName_OtherStateType), INTENT(INOUT) :: OtherState ! Other/optimization states
 TYPE(ModName_PartialOutputPContStateType), INTENT(OUT), OPTIONAL :: dYdx ! Partial derivatives of output functions
 ! (Y) with respect to the continuous
 ! states (x)
 TYPE(ModName_PartialContStatePContStateType), INTENT(OUT), OPTIONAL :: dXdx ! Partial derivatives of continuous state
 ! functions (X) with respect to
 ! the continuous states (x)
 TYPE(ModName_PartialDiscStatePContStateType), INTENT(OUT), OPTIONAL :: dXddx ! Partial derivatives of discrete state
 ! functions (Xd) with respect to
 ! the continuous states (x)
 TYPE(ModName_PartialConstrStatePContStateType),INTENT(OUT), OPTIONAL :: dZdx ! Partial derivatives of constraint state
 ! functions (Z) with respect to
 ! the continuous states (x)
 INTEGER(IntKi), INTENT(OUT) :: ErrStat ! Error status of the operation
 CHARACTER(*), INTENT(OUT) :: ErrMsg ! Error message if ErrStat /= ErrID_None

 ! Initialize ErrStat

 ErrStat = ErrID_None

50

 ErrMsg = ""

 IF (PRESENT(dYdx)) THEN

 ! Calculate the partial derivative of the output functions (Y) with respect to the continuous states (x) here:

 dYdx%DummyOutput%DummyContState = 0

 END IF

 IF (PRESENT(dXdx)) THEN

 ! Calculate the partial derivative of the continuous state functions (X) with respect to the continuous states (x) here:

 dXdx%DummyContState%DummyContState = 0

 END IF

 IF (PRESENT(dXddx)) THEN

 ! Calculate the partial derivative of the discrete state functions (Xd) with respect to the continuous states (x) here:

 dXddx%DummyDiscState%DummyContState = 0

 END IF

 IF (PRESENT(dZdx)) THEN

 ! Calculate the partial derivative of the constraint state functions (Z) with respect to the continuous states (x) here:

 dZdx%DummyConstrState%DummyContState = 0

 END IF

 END SUBROUTINE ModName_JacobianPContState
!--
SUBROUTINE ModName_JacobianPDiscState(t, u, p, x, xd, z, OtherState, dYdxd, dXdxd, dXddxd, dZdxd, ErrStat, ErrMsg)
! Routine to compute the Jacobians of the output (Y), continuous- (X), discrete- (Xd), and constraint-state (Z) functions
! with respect to the discrete states (xd). The partial derivatives dY/dxd, dX/dxd, dXd/dxd, and DZ/dxd are returned.
!..

 REAL(DbKi), INTENT(IN) :: t ! Current simulation time in seconds
 TYPE(ModName_InputType), INTENT(IN) :: u ! Inputs at t
 TYPE(ModName_ParameterType), INTENT(IN) :: p ! Parameters
 TYPE(ModName_ContinuousStateType), INTENT(IN) :: x ! Continuous states at t

51

 TYPE(ModName_DiscreteStateType), INTENT(IN) :: xd ! Discrete states at t
 TYPE(ModName_ConstraintStateType), INTENT(IN) :: z ! Constraint states at t
 TYPE(ModName_OtherStateType), INTENT(INOUT) :: OtherState ! Other/optimization states
 TYPE(ModName_PartialOutputPDiscStateType), INTENT(OUT), OPTIONAL :: dYdxd ! Partial derivatives of output functions
 ! (Y) with respect to the discrete
 ! states (xd)
 TYPE(ModName_PartialContStatePDiscStateType), INTENT(OUT), OPTIONAL :: dXdxd ! Partial derivatives of continuous state
 ! functions (X) with respect to the
 ! discrete states (xd)
 TYPE(ModName_PartialDiscStatePDiscStateType), INTENT(OUT), OPTIONAL :: dXddxd ! Partial derivatives of discrete state
 ! functions (Xd) with respect to the
 ! discrete states (xd)
 TYPE(ModName_PartialConstrStatePDiscStateType),INTENT(OUT), OPTIONAL :: dZdxd ! Partial derivatives of constraint state
 ! functions (Z) with respect to the
 ! discrete states (xd)
 INTEGER(IntKi), INTENT(OUT) :: ErrStat ! Error status of the operation
 CHARACTER(*), INTENT(OUT) :: ErrMsg ! Error message if ErrStat /= ErrID_None

 ! Initialize ErrStat

 ErrStat = ErrID_None
 ErrMsg = ""

 IF (PRESENT(dYdxd)) THEN

 ! Calculate the partial derivative of the output functions (Y) with respect to the discrete states (xd) here:

 dYdxd%DummyOutput%DummyDiscState = 0

 END IF

 IF (PRESENT(dXdxd)) THEN

 ! Calculate the partial derivative of the continuous state functions (X) with respect to the discrete states (xd) here:

 dXdxd%DummyContState%DummyDiscState = 0

 END IF

 IF (PRESENT(dXddxd)) THEN

 ! Calculate the partial derivative of the discrete state functions (Xd) with respect to the discrete states (xd) here:

 dXddxd%DummyDiscState%DummyDiscState = 0

 END IF

52

 IF (PRESENT(dZdxd)) THEN

 ! Calculate the partial derivative of the constraint state functions (Z) with respect to the discrete states (xd) here:

 dZdxd%DummyConstrState%DummyDiscState = 0

 END IF

END SUBROUTINE ModName_JacobianPDiscState
!--
SUBROUTINE ModName_JacobianPConstrState(t, u, p, x, xd, z, OtherState, dYdz, dXdz, dXddz, dZdz, ErrStat, ErrMsg)
! Routine to compute the Jacobians of the output (Y), continuous- (X), discrete- (Xd), and constraint-state (Z) functions
! with respect to the constraint states (z). The partial derivatives dY/dz, dX/dz, dXd/dz, and DZ/dz are returned.
!..

 REAL(DbKi), INTENT(IN) :: t ! Current simulation time in seconds
 TYPE(ModName_InputType), INTENT(IN) :: u ! Inputs at t
 TYPE(ModName_ParameterType), INTENT(IN) :: p ! Parameters
 TYPE(ModName_ContinuousStateType), INTENT(IN) :: x ! Continuous states at t
 TYPE(ModName_DiscreteStateType), INTENT(IN) :: xd ! Discrete states at t
 TYPE(ModName_ConstraintStateType), INTENT(IN) :: z ! Constraint states at t
 TYPE(ModName_OtherStateType), INTENT(INOUT) :: OtherState ! Other/optimization states
 TYPE(ModName_PartialOutputPConstrStateType), INTENT(OUT), OPTIONAL :: dYdz ! Partial derivatives of output
 ! functions (Y) with respect to the
 ! constraint states (z)
 TYPE(ModName_PartialContStatePConstrStateType), INTENT(OUT), OPTIONAL :: dXdz ! Partial derivatives of continuous
 ! state functions (X) with respect to
 ! the constraint states (z)
 TYPE(ModName_PartialDiscStatePConstrStateType), INTENT(OUT), OPTIONAL :: dXddz ! Partial derivatives of discrete state
 ! functions (Xd) with respect to the
 ! constraint states (z)
 TYPE(ModName_PartialConstrStatePConstrStateType),INTENT(OUT), OPTIONAL :: dZdz ! Partial derivatives of constraint
 ! state functions (Z) with respect to
 ! the constraint states (z)
 INTEGER(IntKi), INTENT(OUT) :: ErrStat ! Error status of the operation
 CHARACTER(*), INTENT(OUT) :: ErrMsg ! Error message if ErrStat /= ErrID_None

 ! Initialize ErrStat

 ErrStat = ErrID_None
 ErrMsg = ""

 IF (PRESENT(dYdz)) THEN

 ! Calculate the partial derivative of the output functions (Y) with respect to the constraint states (z) here:

 dYdz%DummyOutput%DummyConstrState = 0

53

 END IF

 IF (PRESENT(dXdz)) THEN

 ! Calculate the partial derivative of the continuous state functions (X) with respect to the constraint states (z) here:

 dXdz%DummyContState%DummyConstrState = 0

 END IF

 IF (PRESENT(dXddz)) THEN

 ! Calculate the partial derivative of the discrete state functions (Xd) with respect to the constraint states (z) here:

 dXddz%DummyDiscState%DummyConstrState = 0

 END IF

 IF (PRESENT(dZdz)) THEN

 ! Calculate the partial derivative of the constraint state functions (Z) with respect to the constraint states (z) here:

 dZdz%DummyConstrState%DummyConstrState = 0

 END IF

END SUBROUTINE ModName_JacobianPConstrState
!++

END MODULE ModuleName
!**

54

Appendix F: Subroutine Inputs and Outputs for Modules
Developed for the FAST CAE Tool Framework

The following boxes with arrows indicate the inputs and outputs required for the subroutines
developers will have to provide in the FAST modular framework. Arrows going into the box are
INTENT(IN); arrows going out of a box are INTENT(OUT); when an output arrow lines up
horizontally with an input arrow, it indicates a single argument that is INTENT(INOUT). The
Fortran template for these subroutines is provided in Appendix E. Subroutines not pictured here
will be generated automatically using the FAST Registry described in Appendix H.

Initialization/End Subroutines:

Time-Stepping Subroutines:

55

56

Jacobian Subroutines:

57

Appendix G: Mesh Module and Types

The modules ModMesh and ModMesh_Types provide data structures and subroutines for
representing and manipulating meshes and meshed data in the FAST modular framework. Inputs,
outputs, parameters, and states can all be stored as meshed data; however, input and output data
on discretized spatial boundaries must be stored using the ModMesh and ModMesh_Types
modules. A mesh is comprised of a set of “nodes” (simple points in space) together with
information specifying how they are connected to form “elements” (Figure 9) representing
spatial boundaries between components. ModMesh and ModMesh_Types define point, line,
surface, and volume elements in a standard isoparametric mapping from finite element analysis.
Each element (except points) has optional midside nodes that allow quadradically defined curved
lines or surfaces. Otherwise, lines are straight and surfaces are flat. The ModMesh and
ModMesh_Types modules may be USE associated explicitly or as part of NWTC_Library.

Associated with a mesh are one or more “fields” that represent the values of variables or
“degrees of freedom” at each node. A mesh always has at least one field named “Position” that
specifies the location in three-dimensional space as an Xi,Yi,Zi triplet of each node. The
ModMesh_Types module predefines a number of other fields of triples representing velocities,
forces, and moments as well as a field of 36 values representing added mass, and a field of 9
values representing a direction cosine matrix.

The operations on meshes defined in the ModMesh module are creation, spatio-location of
nodes, construction, committing the mesh definition, initialization of fields, accessing field data,
updating field data, copying, deallocating, and destroying meshes. Higher level operations on
meshes—such as interpolation, remapping, subsetting, and joining—are being developed in
another module.

Creating a mesh entails defining an instance of a mesh structure of TYPE(MeshType) to store a

Figure 9. Line, surface, and volume elements defined and managed by ModMesh_Types

and ModMesh modules: lines, triangles, quadrilaterals, wedges, and tetrahedra.

58

mesh of a given size (number of nodes). Spatio-location involves providing the spatial location
information of each node of the mesh within the FAST global coordinate system. Constructing a
mesh involves connecting the nodes together into elements and, in turn, connecting the elements.
Once a mesh has been created, constructed, and spatio-located it must be committed, which tells
the mesh library that the mesh has been completely defined and ready to be initialized.
Initializing the mesh involves setting the variables at each node in the mesh to their initial values,
if any.

Requiring that a mesh be explicitly committed before it can be used allows the library to
precompute traversal information, neighbor lists and other information about the mesh to
construct neighbor lists to facilitate efficient access. It is an error to initialize meshed data or use
a mesh until it is committed. Likewise, and with the exception of changing spatio-location of
nodes, it is an error to redefine the mesh after it has been committed.

The ModMesh routines for creation, spatio-location, construction, committing and initialization
operations on a mesh are intended to be called from the ModName_Init routine provided in the
FAST modularization framework. The dirver program calls the component’s ModName_Init
routine, which creates, constructs, and initializes and then passes back the ready-to-use meshes.
Once a mesh is constructed and initialized, it may be used. The access and update operations on
a mesh are intended for use by the routines provided by the developer of a FAST module.

The remainder of this appendix describes the MeshType data type and the subroutines that
operate on the type.

Type: MeshType
The MeshType stores information about the nodes, elements, and fields of a mesh. The members
of the MeshType derived data type shown below are all public and may be accessed as needed
by the developer. However, only certain members may be modified once the mesh is committed:
those that store values of fields on the mesh (indicated in comments below).* The RemapFlag
may also be altered directly by component code to, for example, indicate to the Glue code that
positions of nodes of the mesh have changed. The public definition of MeshType is:

TYPE, PUBLIC :: MeshType
 LOGICAL :: committed ! Indicate whether this mesh is committed
 INTEGER(IntKi) :: ios ! COMPONENT_INPUT/OUTPUT/STATE/PARAMETER
 LOGICAL :: RemapFlag ! Remap code: false=noaction/ignore
 ! true=remap required
 INTEGER(IntKi) :: Nnodes ! Number of nodes (vertices) in mesh
 INTEGER(IntKi) :: Nelements ! Number of elements in mesh
 INTEGER(IntKi) :: Npoint ! Number of point elements
 INTEGER(IntKi) :: Nline2 ! Number of 2-node line elements
 INTEGER(IntKi) :: Nline3 ! Number of 3-node line elements
 INTEGER(IntKi) :: Ntri3 ! Number of 3-node triangle elements
 INTEGER(IntKi) :: Ntri6 ! Number of 6-node triangle elements
 INTEGER(IntKi) :: Nquad4 ! Number of 4-node quadrilateral elements
 INTEGER(IntKi) :: Nquad8 ! Number of 8-node quadrilateral elements
 INTEGER(IntKi) :: Ntet4 ! Number of 4-node tet elements
 INTEGER(IntKi) :: Ntet10 ! Number of 10-node tet elements
 INTEGER(IntKi) :: Nhex8 ! Number of 8-node hex elements
 INTEGER(IntKi) :: Nhex20 ! Number of 20-node hex elements
 INTEGER(IntKi) :: Nwedge6 ! Number of 6-node wedge elements

* There is no way to actually prevent anyone from changing the values that shouldn’t be changed after the mesh is
committed, so it is up to the module developer to adhere to this requirement.

59

 INTEGER(IntKi) :: Nwedge15 ! Number of 15-node wedge elements
 INTEGER(IntKi), POINTER :: element_point(:) ! Point connectivity
 INTEGER(IntKi), POINTER :: element_line2(2,:) ! 2-node line connectivity
 INTEGER(IntKi), POINTER :: element_line3(3,:) ! 3-node line connectivity
 INTEGER(IntKi), POINTER :: element_tri3(3,:) ! 3-node triangle connectivity
 INTEGER(IntKi), POINTER :: element_tri6(6,:) ! 6-node triangle connectivity
 INTEGER(IntKi), POINTER :: element_quad4(4,:) ! 4-node quad connectivity
 INTEGER(IntKi), POINTER :: element_quad8(8,:) ! 8-node quad connectivity
 INTEGER(IntKi), POINTER :: element_tet4(4,:) ! 4-node tet connectivity
 INTEGER(IntKi), POINTER :: element_tet10(10,:) ! 10-node tet connectivity
 INTEGER(IntKi), POINTER :: element_hex8(8,:) ! 8-node hex connectivity
 INTEGER(IntKi), POINTER :: element_hex20(20,:) ! 20-node hex connectivity
 INTEGER(IntKi), POINTER :: element_wedge6(6,:) ! 6-node wedge connectivity
 INTEGER(IntKi), POINTER :: element_wedge15(15,:) ! 15-node wedge connectivity
 REAL(ReKi), POINTER :: Position(3,:) ! XYZ coordinate of node
 REAL(ReKi), POINTER :: Force(3,:) ! Field: Force vectors
 REAL(ReKi), POINTER :: Moment(3,:) ! Field: Moment vectors
 REAL(ReKi), POINTER :: Orientation(3,3,:) ! Field: Direction Cosine Matrix (DCM)
 REAL(ReKi), POINTER :: RotationVel(3,:) ! Field: Rotational Velocities
 REAL(ReKi), POINTER :: TranslationVel(3,:) ! Field: Translational Velocities
 REAL(ReKi), POINTER :: AddedMass(6,6,:) ! Field: Added mass matrix
 REAL(ReKi), POINTER :: Displacement(3,:) ! Field: Displacement of nodes
 REAL(ReKi), POINTER :: Scalars(:,:) ! Field: Scalars (1st Dim is over Scalars)
 REAL(ReKi), POINTER :: ElementScalars(:,:) ! Scalars associated with elements
 TYPE(MeshType), POINTER :: YoungerSibling ! Pointer to next sibling in list
 TYPE(MeshType), POINTER :: ElderSibling ! Pointer to prev sibling in list
END TYPE MeshType

Subroutine: MeshCreate
Takes a blank, uninitialized instance of Type(MeshType) and defines the number of nodes in the
mesh. Optional arguments indicate the fields that will be allocated and associated with the nodes
of the mesh. The fields that may be associated with the mesh nodes are Force, Moment,
Orientation, Rotation, Translation, AddedMass, and an arbitrary number of Scalars. See the
definition of ModMeshType for descriptions of these fields.

Required arguments:

TYPE(MeshType),INTENT(INOUT) :: BlankMesh ! Mesh to be created
INTEGER(IntKi), INTENT(IN) :: IOS ! Intended use:
 ! COMPONENT_INPUT,
 ! COMPONENT_OUTPUT,
 ! COMPONENT_STATE, or
 ! COMPONENT_PARAMETER
INTEGER(IntKi),INTENT(IN) :: Nnodes ! Number of nodes in mesh
INTEGER(IntKi),INTENT(OUT) :: ErrStat ! Error code
CHARACTER(*),INTENT(OUT) :: ErrMess ! Error message

Optional arguments:

LOGICAL,INTENT(IN)::
 Force ! If present and true, allocate Force field
 ,Moment ! If present and true, allocate Moment field
 ,Orientation ! If present and true, allocate Orientation field
 ,Translation ! If present and true, allocate Translation field
 ,Rotation ! If present and true, allocate Rotation field
INTEGER(IntKi),INTENT(IN):: nScalars ! If present and true, alloc n Scalars

Subroutine: MeshPositionNode
For a given node in a mesh, assign the coordinates of the node in the global coordinate space.
Returns a non-zero value in ErrStat if Inode is outside the range 1..Nnodes.

60

Required arguments:

TYPE(MeshType),INTENT(INOUT) :: Mesh ! Mesh being spatio-located
INTEGER(IntKi),INTENT(IN) :: Inode ! Number of node being located
REAL(ReKi),INTENT(IN) :: Pos(3) ! Xi,Yi,Zi, coordinates of node
INTEGER(IntKi),INTENT(OUT) :: ErrStat ! Error code
CHARACTER(*),INTENT(OUT) :: ErrMess ! Error message

Subroutine: MeshConstructElement
Given a mesh and an element name, construct an element whose vertices are the node indices
listed as the remaining arguments of the call to MeshConstructElement. The adjacency of
elements is implied when elements are created that share some of the same nodes. Returns a non-
zero value on error.

[Implementation note: the routine is defined as an F90 module procedure to allow variable length
list of node indices.]

Required arguments:

TYPE(MeshType),INTENT(INOUT) :: Mesh ! Mesh being constructed
INTEGER(IntKi),INTENT(IN) :: Xelement ! See Element Names
INTEGER(IntKi),INTENT(OUT) :: ErrStat ! Error code
CHARACTER(*),INTENT(OUT) :: ErrMess ! Error message
INTEGER(IntKi),INTENT(IN) :: P1, P2, … ! Node index list (variable length)

Subroutine: MeshCommit
Given a mesh that has been created, spatio-located, and constructed, commit the definition of the
mesh, making it ready for initialization and use. Explicitly committing a mesh provides the
opportunity to precompute traversal information, neighbor lists and other information about the
mesh. Returns non-zero in value of ErrStat on error. In the case of sibling meshes, committing
one mesh commits all siblings.

Required arguments:

TYPE(MeshType),INTENT(INOUT) :: Mesh ! Mesh being committed
INTEGER(IntKi),INTENT(OUT) :: ErrStat ! Error code
CHARACTER(*),INTENT(OUT) :: ErrMess ! Error message

Subroutine: MeshCopy
Given an existing mesh and a destination mesh, create a completely new copy, a sibling, or
update the fields of a second existing mesh from the first mesh. If CtrlCode is
MESH_NEWCOPY, an entirely new copy of the mesh is created, including all fields, with the
same data values as the original, but as an entirely separate copy in memory. If CtrlCode is
MESH_SIBLING, the destination mesh is created with the same mesh and position information
of the source mesh, and this new sibling is added to the end of the list for the set of siblings.
Siblings may have different fields (other than Position). Therefore, for a sibling, it is necessary,
as with MeshCreate, to indicate the fields the sibling will have using optional arguments.
Regardless of the setting of CtrlCode, the copy or sibling of the mesh is in the same state as the
original—if the original has not been committed, neither is the copy; in this case, an all-new
copy of the mesh must be committed separately. With MESH_NEWCOPY and
MESH_SIBLING, the destination mesh must be a blank uncreated mesh.

61

If CtrlCode is MESH_UPDATECOPY, Position and other fields of the destination mesh are
updated with the values of the fields in the source. The mesh and field definitions of the source
and destination meshes must match and both must have been already committed. The destination
mesh may be an entirely different copy or it may be a sibling of the source mesh.

Required arguments:

TYPE(MeshType),INTENT(IN) :: SrcMesh ! Mesh being copied
TYPE(MeshType),INTENT(INOUT):: DestMesh ! Copy of mesh
INTEGER(IntKi),INTENT(IN) :: CtrlCode ! MESH_NEWCOPY, MESH_SIBLING, or
 ! MESH_UPDATECOPY
INTEGER(IntKi),INTENT(OUT) :: ErrStat ! Error code
CHARACTER(*),INTENT(OUT) :: ErrMess ! Error message

Optional arguments (used only if CtrlCode is MESH_SIBLING):

LOGICAL,INTENT(IN)::
 Force ! If present and true, allocate Force field
 ,Moment ! If present and true, allocate Moment field
 ,Orientation ! If present and true, allocate Orientation field
 ,Translation ! If present and true, allocate Translation field
 ,Rotation ! If present and true, allocate Rotation field
 ,AddedMass ! If present and true, allocate AddedMess field
INTEGER(IntKi),INTENT(IN):: nScalars ! If present and true, alloc n Scalars

Subroutine: MeshNextElement (mesh traversal)
Given a mesh that has been committed and a control code, retrieve the next element in the mesh.
Used to traverse mesh element by element. On entry, the Istat argument contains a control code:
zero indicates start from the beginning, an integer between 1 and Mesh%Nelements returns that
element, and MESH_NEXT means return the next element in traversal. On exit, it returns the
index of the element in the mesh’s element list, the name of the element (see Element Names),
the number of vertices in the element, and the status of the traversal in Istat (zero or
MESH_NOMOREELEMS). The returned index of the element is then used to access the indices
of the nodes making up the element from the MeshType. For example, if the return value in
Xelement is ELEMENT_LINE2, the node indices for the element will be found in
Mesh%element_line2(1:2,Ielement). See also the section titled, “Accessing a Specific Element
and Node Value in a Mesh” in this appendix.

Required arguments:

TYPE(MeshType),INTENT(INOUT) :: Mesh ! Mesh being traversed
INTEGER(IntKi),INTENT(INOUT) :: Istat ! Control/status of traversal
INTEGER(IntKi),INTENT(OUT) :: Ielement ! Element index
INTEGER(IntKi),INTENT(OUT) :: Xelement ! See Element Names
INTEGER(IntKi),INTENT(OUT) :: Nvertices ! Number of nodes in element
INTEGER(IntKi),INTENT(OUT) :: ErrStat ! Error code
CHARACTER(*),INTENT(OUT) :: ErrMess ! Error message

Subroutine: MeshElemNumNeighbors
Given a mesh and the name and index of an element, return the number of neighboring elements
of the element.

Required arguments:

62

TYPE(MeshType),INTENT(INOUT) :: Mesh ! Mesh being referenced
INTEGER(IntKi),INTENT(IN) :: Thiselement ! Element index of home element
INTEGER(IntKi),INTENT(IN) :: ThisXelement ! Name of home element
INTEGER(IntKi),INTENT(OUT) :: Nneighbors ! Number of neighboring elements
INTEGER(IntKi),INTENT(OUT) :: ErrStat ! Error code
CHARACTER(*),INTENT(OUT) :: ErrMess ! Error message

Subroutine: MeshNextElemNeighbor (neighbor traversal)
Given a mesh and the name and index of an element, return the next neighbor of the element. On
entry, the Istat argument contains a control code: zero indicates start from the beginning, an
integer between 1 and the number of neighbors (as returned by MeshElemNumNeighbors)
returns that neighbor, and MESH_NEXT means return the next element to be returned in
traversal. Returns the index of the element in the home element’s neighbor list, the name of the
neighbor element (see the “Element Names” section of this appendix), the number of vertices in
the neighbor element, and the status of the traversal in Istat (zero or MESH_NOMOREELEMS).
See also the section titled, “Accessing a Specific Element and Node Value in a Mesh” in this
appendix.

Required arguments:

TYPE(MeshType),INTENT(INOUT) :: Mesh ! Mesh being committed
INTEGER(IntKi),INTENT(INOUT) :: Istat ! Control/status of traversal
INTEGER(IntKi),INTENT(IN) :: Thiselement ! Element index of home element
INTEGER(IntKi),INTENT(IN) :: ThisXelement ! Name of home element
INTEGER(IntKi),INTENT(OUT) :: Ielement ! Element index of neighbor
INTEGER(IntKi),INTENT(OUT) :: Xelement ! Name of neighbor element
INTEGER(IntKi),INTENT(OUT) :: Nvertices ! Number of nodes neighbor element
INTEGER(IntKi),INTENT(OUT) :: ErrStat ! Error code
CHARACTER(*),INTENT(OUT) :: ErrMess ! Error message

Subroutine: MeshPack
Given a mesh and a pointer to a buffer of type INTEGER(B1Ki), return the mesh information
compacted into consecutive elements of the buffer. This would be done to allow subsequent
writing of the buffer to a file for restarting later. The sense of the name is “pack the data from the
mesh into buffer”. IMPORTANT: MeshPack allocates the buffer. It is incumbent upon the
calling program to deallocate the buffer when it is no longer needed. For sibling meshes,
MeshPack should be called separately for each sibling, since, except for Position, the fields
allocated with the siblings are separate and unique to each sibling.

Required arguments:

TYPE(MeshType),INTENT(INOUT) :: Mesh ! Mesh being packed/saved
INTEGER(B1Ki),ALLOCATABLE,INTENT(INOUT) :: RetAry(:) ! Pointer to buffer
INTEGER(IntKi),INTENT(OUT) :: ErrStat ! Error code
CHARACTER(*),INTENT(OUT) :: ErrMess ! Error message

Subroutine: MeshUnpack
Given a blank, uncreated mesh and a buffer of type INTEGER(B1Ki), unpack the mesh
information from the buffer. This would be done to recreate a mesh after reading in the buffer on
a restart of the program. The sense of the name is “unpack the mesh from buffer.” The resulting
mesh will be returned in the exact state as when the data in the buffer was packed using
MeshPack. If the mesh has an already recreated sibling mesh from a previous call to

63

MeshUnpack, specify the existing sibling as an optional argument so that the sibling
relationship is also recreated.

Required arguments:

TYPE(MeshType),INTENT(INOUT) :: BlankMesh ! Mesh being recreated
INTEGER(B1Ki),INTENT(IN) :: SrcAry(:) ! Pointer to buffer
INTEGER(IntKi),INTENT(OUT) :: ErrStat ! Error code
CHARACTER(*),INTENT(OUT) :: ErrMess ! Error message

Optional argument:

TYPE(MeshType),INTENT(IN) :: Sibling ! Existing sibling for reunion

Subroutine: MeshDestroy
Destroy the given mesh and deallocate all of its data. Destroying a sibling in a set has no effect
on the other siblings other than to remove the victim from the list of siblings.

Required arguments:

TYPE(MeshType),INTENT(INOUT) :: Mesh ! Mesh being destroyed
INTEGER(IntKi),INTENT(OUT) :: ErrStat ! Error code
CHARACTER(*),INTENT(OUT) :: ErrMess ! Error message

Accessing a Specific Element and Node Value in a Mesh
There is no subroutine provided to access a specific element in a mesh. Rather, one may accesses
the desired element from the mesh itself. For example: Mesh%element_tri3(1:3,i) contains the
node indices for the ith 3-node triangle element in the mesh. Likewise, the fields associated with
the nodes of the element are accessible using the node indices, assuming the field is allocated for
the nodes of the mesh. For example, the positions of the three nodes of the ith element_tri3,
above, are accessible as:

mesh%Position(1:3, mesh%element_tri3(1,i)) ! XYZ of node 1
mesh%Position(1:3, mesh%element_tri3(2,i)) ! XYZ of node 2
mesh%Position(1:3, mesh%element_tri3(3,i)) ! XYZ of node 3

The position field is always defined for a mesh. The availability of other fields depends on how
the mesh was created using MeshCreate. When in doubt, test with ASSOCIATED(mesh%field)
before accessing a field.

Element Names:
ELEMENT_LINE2 ELEMENT_LINE3
ELEMENT_TRI3 ELEMENT_TRI6
ELEMENT_QUAD4 ELEMENT_QUAD8
ELEMENT_TET4 ELEMENT_TET10
ELEMENT_HEX8 ELEMENT_HEX20
ELEMENT_WEDGE6 ELEMENT_WEDGE15

64

Appendix H: FAST Registry for Automatic Code Generation

This appendix describes the FAST Registry, a utility available to component developers for
table-based automatic generation of code and data types for the FAST component module
interface.

Description
The Registry consists of tables stored in a text file called “Registry.txt,” and a program
(distributed with and compiled with FAST) that reads the Registry when FAST is compiled. This
program automatically generates Fortran code for the ModuleName_Types module, which
includes the module’s derived data types (see Table 2) and implementations of the system input
and output extrapolation/interpolation, Pack{TypeName}/Unpack{TypeName}, and
Copy{TypeName}/Destroy{TypeName} routines (see Table 1) that operate on these types.

The Registry allows the developer to specify the data types for a module once and in a single
location, automating the time consuming and error-prone task of generating the code. The tables
in the Registry serve as a data dictionary for improving understandability and maintainability of
the code.

The FAST Registry is borrowed from a mechanism that was originally developed at NCAR for
the Weather Research and Forecast (WRF) model software*. Under the current implementation,
the FAST software uses a single Registry file that contains entries for all the modules comprising
the suite; however, each module in the FAST framework contains its own Registry “sub-file” (a
Registry file containing the data types for only that module), and the sub-files for all of the
modules will be included together to form a single FAST Registry file. When new modules are
added to FAST, new entries must be added to the table (i.e., a new Registry sub-file for the
module must be created and included in the main Registry file).

Syntax
The Registry file syntax allows continuation lines, comments, conditional compilation directives,
and include statements to bring in Registry statements from other files. Lines that end with a “\”
character continue to the next line. Comments in the registry begin with a “#” character and
extend to the right to the end of the line. Certain elements of an entry are allowed to contain
spaces but then must be enclosed in double quotes ("). Elements of a registry may not contain
quote characters. A hyphen “-” may be used for an entry if the value does not matter or is the
default. Hyphens may be omitted if they appear as the last element(s) of a line.

Logically, the Registry file is a collection of tables that describe the derived types and the types
and dimensions of the fields that make up the derived types. Each entry in the Registry is one
line (possibly continued). The first element of a Registry line specifies which table the line is a
part of. Currently, the FAST Registry has only two tables, “dimspec” and “typedef.”

Dimspec Entries
Dimspec entries are used to define dimensions that will be used subsequently in defining multi-
dimensional arrays as fields within a type. (The dimensions may be defined in-line in the entry

* http://www.mmm.ucar.edu/wrf/WG2/software_2.0/registry_schaffer.pdf

http://www.mmm.ucar.edu/wrf/WG2/software_2.0/registry_schaffer.pdf

65

that defines the array as shown in the typedef entry below; however, one may wish to use
dimspec if a dimension is to be used repeatedly). The form of a dimspec entry is:

• Table membership: The keyword “dimspec” (no quotes)

• DimName: The name of the dimension

• HowDefined: Specification of how the range of the dimension is defined
The DimName is a character-string name that is used in typedef entries to indicate a dimension of
an array in a typedef entry in the registry.

HowDefined specifies how the ranges of the dimension will be defined when the array is
allocated in the running FAST program. The HowDefined entry can be one of:

• constant=[<start constant>:]<end constant>

• the word “deferred” or the colon character “:”
The “constant=” indicates that the integer constant is specified on the right hand side of the equal
sign “=” will be used to dimension the array. “Deferred” or “:” means that the field will be
allocated by the program and that the registry should simply generate this field as allocatable.
The “constant=” syntax allows a starting index for the range to be specified, separated from the
ending index by a colon (for generating Fortran code only). If no starting index is specified, it
defaults to 1.

Typedef Entries
Typedef entries are used to specify types that will appear in the ModuleName_Types module for
a contributed module. There will be a typedef entry for each field of a derived data type. The
form of a typedef entry is:

• Table membership: The keyword “typedef” (no quotes)

• ModuleName: The name of the FAST module the entry is defined for

• TypeName: The name of the derived type this field is a member of

• Type: The type of the field

• Name: The name of the field

• Dims: A string denoting the dimensionality of the field or a hypen (-) if scalar

• IO: Not used, currently. A placeholder for specifying I/O on the field later

• DataName: The name of the field as it is known outside the program

• Description: A short description of the field

• Units: Units for the variable
Fields are added to a type by listing additional entries. ModuleName defines the name of the
FAST module the entry pertains to. TypeName is the name of the derived type being defined
with a new field named Name.

66

The Type element specifies the type of the field being added to the derived type. It may be a
simple type (ReKi, IntKi), a derived type previously defined in the Registry, or MeshType.

Dims specifies the dimensionality of the field being added to the derived type. The entry is a
string of dimension names specified using dimspec entries above. If the developer prefers,
constant ranges may be specified inline. The colon character “:” may be used to indicate a
deferred dimension. Use “ {” and “}” to avoid ambiguous groupings.

The IO entry is not currently used but is included as a placeholder for future functionality. Use a
hypen for this field.

DataName is also not currently used, but is intended to allow a variable to be known by a
different name outside the program to facilitate off-line coupling to other programs. Use a hypen
if the DataName is the same as Name.

Description is a character string provided to document what the variable is for someone reading
the Registry file and could also be output as metadata for self-describing datasets in the future.
The string may contain spaces if enclosed by double quotes (").

Units is a character string provided to document the units of the variable. May be output as
metadata for self-describing datasets. Use a hyphen if there are no units.

Registry Output
A typedef entry for a given TypeName and ModuleName defines a field (a scalar, array, mesh or
other defined type) as a member of type TypeName in the ModuleName_Types module. Each
ModuleName_Types module is defined in a file named “ModuleName_Types.f90.”

The first typedef entry for a given ModuleName in the registry causes the
ModuleName_Types.f90 file to be opened. The first typedef entry for a given TypeName causes
that derived type to be defined in the module.

The registry will generate as many ModuleName_Types.f90 files as there are different
ModuleName values used in the Registry file. Developers should not make changes directly to an
automatically generated ModuleName_Types.f90 file because changes will be lost the next time
the code is compiled and the file overwritten.

Example Registry File
The following page contains an example set of Registry file entries that define the user-defined
data types listed in Table 2 for a module named “ModuleName.”

When FAST is compiled, the registry program processes this Registry file line-by-line; the types
defined in the Registry and the accompanying subroutines for each type are automatically
generated in a module named “ModuleName” that is contained in a file called
“ModuleName_Types.f90.”

67

Registry for ModuleName in the FAST Modularization Framework
This Registry file is used to create MODULE ModuleName_Types, which contains all of the user-defined types needed in ModuleName.
It also contains copy, destroy, pack, and unpack routines associated with each defined data types.
Entries are of the form
keyword <ModuleName/ModName> <TypeName> <FieldType> <FieldName> <Dims> <IO> <DNAME> <DESCRIP> <UNITS>

Use ^ as a shortcut for the value from the previous line.

..... Initialization data ...
Define inputs that the initialization routine may need here:
e.g., the name of the input file, the file root name, etc.
typedef ModuleName/ModName InitInputType CHARACTER(1024) InputFile - - - "Name of the input file; remove if there is no file" -

Define outputs from the initialization routine here:
typedef ^ InitOutputType CHARACTER(10) WriteOutputHdr {:} - - "Names of the output-to-file channels" -
typedef ^ InitOutputType CHARACTER(10) WriteOutputUnt {:}- - "Units of the output-to-file channels" -

..... States ..
Define continuous (differentiable) states here:
typedef ^ ContinuousStateType ReKi DummyContState - - - "Remove this variable if you have continuous states" -

Define discrete (nondifferentiable) states here:
typedef ^ DiscreteStateType ReKi DummyDiscState - - - "Remove this variable if you have discrete states" -

Define constraint states here:
typedef ^ ConstraintStateType ReKi DummyConstrState - - - "Remove this variable if you have constraint states" -

Define any data that are not considered actual states here:
e.g. data used only for efficiency purposes (indices for searching in an array, copies of previous calculations of output
at a given time, etc.)
typedef ^ OtherStateType IntKi DummyOtherState - - - "Remove this variable if you have other states" -

..... Parameters ..
Define parameters here:
Time step for integration of continuous states (if a fixed-step integrator is used) and update of discrete states:
typedef ^ ParameterType DbKi DT - - - "Time step for cont. state integration & disc. state update" seconds

..... Inputs ..
Define inputs that are contained on the mesh here:
#typedef ^ InputType MeshType MeshedInput - - - "Meshed data" -
Define inputs that are not on this mesh here:
typedef ^ InputType ReKi DummyInput - - - "Remove this variable if you have input data" -

..... Outputs ...
Define outputs that are contained on the mesh here:
#typedef ModuleName ModName_OutputType MeshType MeshedOutput - - - "Meshed data" -
Define outputs that are not on this mesh here:
typedef ^ OutputType ReKi DummyOutput - - - "Remove this variable if you have output data" -
typedef ^ ^ ReKi WriteOutput {:} - - "Example of data to be written to an output file" "s,-"

68

Appendix I: Example Driver Program for Modules in the FAST Modular Framework
!**
! ModuleName_DriverCode: This code tests the template modules
!..
! LICENSING
! Copyright (C) 2012 National Renewable Energy Laboratory
!
! This file is part of ModuleName.
!
! ModuleName is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as
! published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
!
! This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
! of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along with ModuleName.
! If not, see <http://www.gnu.org/licenses/>.
!
!**
PROGRAM TestTemplate

 USE NWTC_Library
 USE ModuleName
 USE ModuleName_Types

 IMPLICIT NONE

 INTEGER(IntKi), PARAMETER :: NumInp = 1 ! Number of inputs sent to ModName_UpdateStates

 ! Program variables

 REAL(DbKi) :: Time ! Variable for storing time, in seconds
 REAL(DbKi) :: TimeInterval ! Interval between time steps, in seconds
 REAL(DbKi) :: InputTime(NumInp) ! Variable for storing time associated with inputs, in seconds

 TYPE(ModName_InitInputType) :: InitInData ! Input data for initialization
 TYPE(ModName_InitOutputType) :: InitOutData ! Output data from initialization

 TYPE(ModName_ContinuousStateType) :: x ! Continuous states
 TYPE(ModName_DiscreteStateType) :: xd ! Discrete states
 TYPE(ModName_ConstraintStateType) :: z ! Constraint states
 TYPE(ModName_ConstraintStateType) :: Z_residual ! Residual of the constraint state functions (Z)
 TYPE(ModName_OtherStateType) :: OtherState ! Other/optimization states

 TYPE(ModName_ParameterType) :: p ! Parameters
 TYPE(ModName_InputType) :: u(NumInp) ! System inputs
 TYPE(ModName_OutputType) :: y ! System outputs

69

 TYPE(ModName_ContinuousStateType) :: dxdt ! First time derivatives of the continuous states

 TYPE(ModName_PartialOutputPInputType) :: dYdu ! Partial derivatives of the output functions
 ! (Y) with respect to the inputs (u)
 TYPE(ModName_PartialContStatePInputType) :: dXdu ! Partial derivatives of the continuous state
 ! functions (X) with respect to the inputs (u)
 TYPE(ModName_PartialDiscStatePInputType) :: dXddu ! Partial derivatives of the discrete state
 ! functions (Xd) with respect to the inputs (u)
 TYPE(ModName_PartialConstrStatePInputType) :: dZdu ! Partial derivatives of the constraint state
 ! functions (Z) with respect to the inputs (u)
 TYPE(ModName_PartialOutputPContStateType) :: dYdx ! Partial derivatives of the output functions (Y)
 ! with respect to the continuous states (x)
 TYPE(ModName_PartialContStatePContStateType) :: dXdx ! Partial derivatives of the continuous state funct-
 ! ions (X) with respect to the continuous states (x)
 TYPE(ModName_PartialDiscStatePContStateType) :: dXddx ! Partial derivatives of the discrete state funct-
 ! ions (Xd) with respect to continuous states (x)
 TYPE(ModName_PartialConstrStatePContStateType) :: dZdx ! Partial derivatives of the constraint state funct-
 ! ions (Z) with respect to the continuous states (x)
 TYPE(ModName_PartialOutputPDiscStateType) :: dYdxd ! Partial derivatives of the output functions (Y)
 ! with respect to the discrete states (xd)
 TYPE(ModName_PartialContStatePDiscStateType) :: dXdxd ! Partial derivatives of the continuous state funct-
 ! ions (X) with respect to the discrete states (xd)
 TYPE(ModName_PartialDiscStatePDiscStateType) :: dXddxd ! Partial derivatives of the discrete state funct-
 ! ions (Xd) with respect to the discrete states (xd)
 TYPE(ModName_PartialConstrStatePDiscStateType) :: dZdxd ! Partial derivatives of the constraint state funct-
 ! ions (Z) with respect to the discrete states (xd)
 TYPE(ModName_PartialOutputPConstrStateType) :: dYdz ! Partial derivatives of the output functions (Y)
 ! with respect to the constraint states (z)
 TYPE(ModName_PartialContStatePConstrStateType) :: dXdz ! Partial derivatives of the continuous state funct-
 ! ions (X) with respect to the constraint states (z)
 TYPE(ModName_PartialDiscStatePConstrStateType) :: dXddz ! Partial derivatives of the discrete state funct-
 ! ions (Xd) with respect to constraint states (z)
 TYPE(ModName_PartialConstrStatePConstrStateType) :: dZdz ! Partial derivatives of the constraint state funct-
 ! ions (Z) with respect to the constraint states (z)

 INTEGER(IntKi) :: n ! Loop counter (for time step)
 INTEGER(IntKi) :: ErrStat ! Status of error message
 CHARACTER(1024) :: ErrMsg ! Error message if ErrStat /= ErrID_None

 REAL(ReKi), ALLOCATABLE :: Re_SaveAry (:) ! Array to store reals in packed data structure
 REAL(DbKi), ALLOCATABLE :: Db_SaveAry (:) ! Array to store doubles in packed data structure
 INTEGER(IntKi), ALLOCATABLE :: Int_SaveAry (:) ! Array to store integers in packed data structure

 !...
 ! Routines called in initialization
 !...

70

 ! Populate the InitInData data structure here:

 InitInData%InputFile = 'MyInputFileName.inp'

 ! Set the driver's request for time interval here:

 TimeInterval = 0.25 ! Glue code's request for delta time (likely based on information from other modules)

 ! Initialize the module

 CALL ModName_Init(InitInData, u(1), p, x, xd, z, OtherState, y, TimeInterval, InitOutData, ErrStat, ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary
 CALL WrScr(ErrMsg)
 END IF

 ! Destroy initialization data

 CALL ModName_DestroyInitInput(InitInData, ErrStat, ErrMsg)
 CALL ModName_DestroyInitOutput(InitOutData, ErrStat, ErrMsg)

 !...
 ! Routines called in loose coupling -- the glue code may implement this in various ways
 !...

 DO n = 0,2

 Time = n*TimeInterval
 InputTime(1) = Time

 ! Modify u (likely from the outputs of another module or a set of test conditions) here:

 ! Calculate outputs at n

 CALL ModName_CalcOutput(Time, u(1), p, x, xd, z, OtherState, y, ErrStat, ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary
 CALL WrScr(ErrMsg)
 END IF

 ! Get state variables at next step: INPUT at step n, OUTPUT at step n + 1

 CALL ModName_UpdateStates(Time, n, u, InputTime, p, x, xd, z, OtherState, ErrStat, ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary

71

 CALL WrScr(ErrMsg)
 END IF

 END DO

 !...
 ! Routines called in tight coupling -- time marching only
 !...

 DO n = 0,2

 Time = n * TimeInterval ! Note that the discrete states must be updated only at the TimeInterval defined in initialization

 ! set inputs (u) here:
! u =

 ! Update constraint states at Time

 ! DO

 CALL ModName_CalcConstrStateResidual(Time, u(1), p, x, xd, z, OtherState, Z_residual, ErrStat, ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary
 CALL WrScr(ErrMsg)
 END IF

 ! z =

 ! END DO

 ! Calculate the outputs at Time

 CALL ModName_CalcOutput(Time, u(1), p, x, xd, z, OtherState, y, ErrStat, ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary
 CALL WrScr(ErrMsg)
 END IF

 ! Calculate the continuous state derivatives at Time

 CALL ModName_CalcContStateDeriv(Time, u(1), p, x, xd, z, OtherState, dxdt, ErrStat, ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary
 CALL WrScr(ErrMsg)
 END IF

72

 ! Update the discrete state from step n to step n+1
 ! Note that the discrete states must be updated only at the TimeInterval defined in initialization

 CALL ModName_UpdateDiscState(Time, n, u(1), p, x, xd, z, OtherState, ErrStat, ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary
 CALL WrScr(ErrMsg)
 END IF

 ! Driver should integrate (update) continuous states here:

 !x = function of dxdt, x

 ! Jacobians required:

 CALL ModName_JacobianPInput(Time, u(1), p, x, xd, z, OtherState, dYdu=dYdu, dZdu=dZdu, ErrStat=ErrStat, ErrMsg=ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary
 CALL WrScr(ErrMsg)
 END IF

 CALL ModName_JacobianPConstrState(Time, u(1), p, x, xd, z, OtherState, dYdz=dYdz, dZdz=dZdz, &
 ErrStat=ErrStat, ErrMsg=ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary
 CALL WrScr(ErrMsg)
 END IF

 END DO

 ! Destroy Z_residual and dxdt because they are not necessary anymore

 CALL ModName_DestroyConstrState(Z_residual, ErrStat, ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary
 CALL WrScr(ErrMsg)
 END IF

 CALL ModName_DestroyContState(dxdt, ErrStat, ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary
 CALL WrScr(ErrMsg)
 END IF

 !...
 ! Jacobian routines called in tight coupling
 !...

 CALL ModName_JacobianPInput(Time, u(1), p, x, xd, z, OtherState, dYdu, dXdu, dXddu, dZdu, ErrStat, ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary

73

 CALL WrScr(ErrMsg)
 END IF

 CALL ModName_JacobianPContState(Time, u(1), p, x, xd, z, OtherState, dYdx, dXdx, dXddx, dZdx, ErrStat, ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary
 CALL WrScr(ErrMsg)
 END IF

 CALL ModName_JacobianPDiscState(Time, u(1), p, x, xd, z, OtherState, dYdxd, dXdxd, dXddxd, dZdxd, ErrStat, ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary
 CALL WrScr(ErrMsg)
 END IF

 CALL ModName_JacobianPConstrState(Time, u(1), p, x, xd, z, OtherState, dYdz, dXdz, dXddz, dZdz, ErrStat, ErrMsg)
 IF (ErrStat /= ErrID_None) THEN ! Check if there was an error and do something about it if necessary
 CALL WrScr(ErrMsg)
 END IF

 !...
 ! Routines to pack data (to restart later)
 !...
 CALL ModName_Pack(Re_SaveAry, Db_SaveAry, Int_SaveAry, u(1), p, x, xd, z, OtherState, y, ErrStat, ErrMsg)

 IF (ErrStat /= ErrID_None) THEN
 CALL WrScr(ErrMsg)
 END IF

 !...
 ! Routine to terminate program execution
 !...
 CALL ModName_End(u(1), p, x, xd, z, OtherState, y, ErrStat, ErrMsg)

 IF (ErrStat /= ErrID_None) THEN
 CALL WrScr(ErrMsg)
 END IF

 !...
 ! Routines to retreive packed data (unpack for restart)
 !...
 CALL ModName_Unpack(Re_SaveAry, Db_SaveAry, Int_SaveAry, u(1), p, x, xd, z, OtherState, y, ErrStat, ErrMsg)

 IF (ErrStat /= ErrID_None) THEN
 CALL WrScr(ErrMsg)
 END IF

74

 !...
 ! Routines to copy data (not already tested)
 !...

 !...
 ! Routines to destroy data (not already tested)
 !...

 IF (ALLOCATED(Re_SaveAry)) DEALLOCATE(Re_SaveAry)
 IF (ALLOCATED(Db_SaveAry)) DEALLOCATE(Db_SaveAry)
 IF (ALLOCATED(Int_SaveAry)) DEALLOCATE(Int_SaveAry)

! CALL ModName_DestroyPartialOutputPInput () ! Jacobian Routine not yet implemented

 !...
 ! Routine to terminate program execution (again)
 !...

 CALL ModName_End(u(1), p, x, xd, z, OtherState, y, ErrStat, ErrMsg)
 IF (ErrStat /= ErrID_None) THEN
 CALL WrScr(ErrMsg)
 END IF

END PROGRAM TestTemplate

75

Appendix J: Using the NWTC Subroutine Library

The following documentation provides a general overview of how to use the NWTC Subroutine
Library and what functionality it provides. It is valid for NWTC Subroutine Library version
1.04.01; for other versions of the software, please refer to the library’s change log file for a list of
modifications.

The NWTC Subroutine Library consists of several Fortran MODULES, each contained in its
own source file. If you wish to access any of the parameters or routines from the library, add the
statement

USE NWTC_Library

to the program unit requiring access. All of the modules in the NWTC Subroutine Library will be
accessible through this statement. The library’s NWTC_Init subroutine must also be called
before using any of the other routines or parameters in the library; it is not a problem to call
NWTC_Init multiple times in the same program. To compile the library, see the instructions and
source-file compilation order described in the heading of the “NWTC_Library.f90” file.

An overview of the library’s most common parameters and routines is presented below. For a
complete and more detailed list, please see the documentation provided with the NWTC
Subroutine Library; the headings of the library’s source files also list all available routines.

Parameters
The library provides many constants for precision, which are used to set KIND attributes for
variables (i.e., to specify how many bytes each variable type contains). The SingPrec.f90 source
file contains the constants set for single-precision compilation, and DoubPrec.f90 contains the
constants for double-precision compilation. The three constants for default precision listed in
Table 3 should be used for the majority of your variable declarations. If you have variable types
that must not change between single- and double-precision (e.g., the code is reading a specific
number of bytes from a binary file), use the constants for specific precision listed in Table 3.

The error codes in the library are designed to provide a standardize way to categorize the severity
of warnings or errors encountered in program execution. This method allows the developer or
user to stop the program (in the driver program—never stop the code in a module!) at a specified
error level. For example, you could stop program execution if you encountered a warning.

The library also includes several common mathematical constants involving π as well as factors
to convert between degrees and radians and to convert between revolutions per minute (RPM)
and radians per second (RPS).

76

Routines
Table 4 contains a list of some of the most common routines in the library. Developers
(particularly those in the FAST modularization framework) should use the routines provided in
the library whenever possible. Using the library standardizes processes like error checking* and
also makes modifications easier (e.g., if you link your code to Program A, which cannot write to
the screen in a standard way, you can modify the library routines to call the Program A’s own
functions to display messages).

* Note that the error checking in the NWTC Library does not currently use the Error Codes listed in Table 3, but it
will be fixed in a future version. The current implementation uses the ErrStat flag to indicate an error (non-zero) or
non-error (zero) condition.

Table 3. Some of the most common parameters available in the NWTC Subroutine Library.

Description

IntKi Default KIND parameter for INTEGER (whole number) values
ReKi Default KIND parameter for REAL (floating-point) values
DbKi Default KIND parameter for DOUBLE (floating-point) values

B1Ki KIND for one-byte INTEGER (whole number) values
B2Ki KIND for two-byte INTEGER (whole number) values
B4Ki KIND for four-byte INTEGER (whole number) values
B8Ki KIND for eight-byte INTEGER (whole number) values
SiKi KIND for four-byte REAL (floating-point) values
R8Ki KIND for eight-byte REAL (floating-point) values
QuKi KIND for 16-byte REAL (floating-point) values

ErrID_None Lowest error level: no error
ErrID_Info Error level 1: an informational message
ErrID_Warn Error level 2: a warning message
ErrID_Severe Error level 3: a severe error
ErrID_Fatal Highest error level: a fatal error

Pi π: The ratio of a circle's circumference to its diameter
TwoPi 2π
PiBy2 π/2
TwoByPi 2/π

D2R Degrees to radians: π/180°
R2D Radians to degrees: 180°/π
RPM2RPS Revolutions per minute to radians per second: π/30-s
RPS2RPM Radians per second to revolutions per minute: 30-s/π

Character Constants
TAB ASCII character 9 (the tab character)

Constants for Default Precision

Mathematical Constants

Error Codes

Factors to Convert Between Different Units

Constants for Specific Precision

Parameter

77

Table 4. Some of the most common routines available in the NWTC Subroutine Library.

Description

GetNewUnit Returns the next unit number not currently connected to a file
OpenFInpFile Opens a formatted (text) file for reading (input)
OpenFOutFile Opens a formatted (text) file for writing (output)
OpenBinInpFile Opens a binary file for reading (input)
OpenBin Opens a binary file for writing (output)

ReadVar Reads a variable from the next line of an input file
ReadAry Reads an array from an input file, array elements separated by whitespace
ReadAryLines Reads an array from an input file, one array element per line
ReadCom Reads a comment line from an input file
ReadStr Reads a string variable (including whitespace) from an input file

WrScr Writes a string to the screen
WrOver Writes a string over the last line written to the screen
WrNR Write a string to the screen without using a line return
WrScr1 Writes a string to the screen following a blank line
DispNVD Writes the program name, version, and date to the screen

Num2LStr Converts a numeric value to a left-aligned string
Conv2UC Converts a string to upper case
CountWords Counts the number of words in a string
CurDate Returns the current date as a string
CurTime Returns the current time as a string
CheckArgs Returns the input file name specified from a command-line argument
GetPath Parses the path name from the name of a given file
GetRoot Parses the root name from the name of a given file
PathIsRelative Determines if the given file name is an absolute or relative name

Cross_Product Calculates the cross product of two vectors
Mean Calculates the average value of an array
StdDevFn Calculates the standard deviation of an array
AddOrSub2Pi Converts an angle to a value within 2π of another angle
MPi2Pi Converts an angle to a value between -π and π

EqualRealNos Determines if two REAL numbers are within a certain tolerance

LocateBin Performs a binary search for a value in an array
LocateStp Performs a stepwise search for a value in an array

InterpBin Performs interpolation using a binary search
InterpStp Performs interpolation using a step-wise search

Routine
I/O Routines to Open Files

I/O Routines to Write to the Screen

Mathematical Functions

Routines for Interpolation

I/O Routines to Read from Text Files

Routines to Retrieve and Manipulate Strings

Routine to Compare Real Numbers

Routines for Searching

78

Appendix K: Fortran Compilation Options

Table 5. Some compilation options available in Intel and GNU Fortran.

Intel Fortran
(Windows)

Intel Fortran
(Linux and Mac)

GNU Fortran

Data options

Initialize scalar values to zero* /Qzero -zero -finit-local-zero

Place variables in static
memory* /Qsave -save -fno-automatic

Allocate variables to the run-
time stack

/automatic
/auto

-automatic
-auto

-fautomatic

Use bytes to specify record
length values in unformatted
fi les

/assume:byterecl -assume byterecl (not available)

Define all default real (and
complex) variables as 8 bytes
long

/real-size:64 -real-size 64 -fdefault-real-8

Optimization options
Disable all optimizations
(debug mode) /Od -O0 -O0

Enable optimizations for speed
(release mode) /O2 -O2 -O2

Enable higher optimizations
(may set other options; may not
be appropriate for all codes)

/O3 -O3 -O3

Debugging options
Provide source fi le traceback
information when a severe
error occurs at run time

/traceback -traceback -fbacktrace

Check array subscripts /check:bounds -check bounds -fcheck=bounds
Fortran Dialect Options

Produce warning/error for non-
standard Fortran 2003 code /stand:f03 -std03 -std=f2003

Allow free-format code to
exceed 132 columns (allowed by default) (allowed by default) -ffree-line-length-none

Other
Display compiler version
information /logo

-logo
-V

-v

Preprocess source fi les before
compilation /fpp -fpp -x f95-cpp-input

Create 32-bit code -m32
Create 64-bit code -m64
* not recommended

79

Appendix L: Instructions for Compiling FAST using IVF for
Windows®

The following instructions are provided to give users a general idea on how to compile the FAST
code. These instructions have been developed using FAST 7.01.00a-bjj. Please note that names
and number of source files may change in different releases; the Compile_FAST.bat script
included in the FAST archive will contain the names of all the files required to compile the code.

Before compiling, make sure you have downloaded all of the source files you need to compile.
For FAST 7.01.00a-bjj, this includes FAST*, AeroDyn† v13.00.01a-bjj, and NWTC Subroutine
Library‡ v1.04.01.

Compiling FAST Using the Windows Command Line
FAST is currently distributed with a batch file called “Compile_FAST.bat” that will compile the
code using IVF. We are aware that a makefile would be a better alternative, but do not currently
have the resources to create and support it.

Before using Compile_FAST.bat, you must modify variables in the sections labeled “set
compiler internal variables” and “local paths.”

Set Compiler Variables
In the “Set Compiler Internal Variables” section, you make sure that the proper paths and
environment variables are set for the compiler and linker. The number one reason that people
have trouble with the Compile_FAST.bat script is that this step has not been done correctly. The
blue text shown in Figure 10 (copied from Compile_FAST.bat) must be changed to reflect your
compiler.

One way to find this command is to open the shortcut to the IVF command prompt (also called
IVF Build Environment in some versions). You can usually find the shortcut at a location named
something like Start > All Programs > Intel CompilerName > CommandPromptName.
(Different versions of the compiler may have more submenus.) Right click on the shortcut and
click “Properties.” (See Figure 11 for an example.) A window similar to Figure 12 will open.

* http://wind.nrel.gov/designcodes/simulators/fast/
† http://wind.nrel.gov/designcodes/simulators/aerodyn/
‡ http://wind.nrel.gov/designcodes/miscellaneous/nwtc_subs/

Figure 10. The “Set Compiler Internal Variables” section of Compile_FAST.bat for FAST
v7.01.00a-bjj. Text in blue must be changed by the user before running the script.

REM --
REM set compiler internal variables
REM --
REM You can run this bat file from the IVF compiler's command prompt (and not
REM do anything in this section). If you choose not to run from the IVF command
REM prompt, you must call the compiler's script to set internal variables.
REM TIP: Right click on the IVF Compiler's Command Prompt shortcut, click
REM properties, and copy the target (without cmd.exe and/or its switches) here:

CALL "C:\Program Files (x86)\Intel\ComposerXE-2011\bin\ipsxe-comp-vars.bat" ia32 vs2008

http://wind.nrel.gov/designcodes/simulators/fast/
http://wind.nrel.gov/designcodes/simulators/aerodyn/
http://wind.nrel.gov/designcodes/miscellaneous/nwtc_subs/
http://wind.nrel.gov/designcodes/miscellaneous/nwtc_subs/
http://wind.nrel.gov/designcodes/simulators/fast/
http://wind.nrel.gov/designcodes/simulators/aerodyn/
http://wind.nrel.gov/designcodes/miscellaneous/nwtc_subs/

80

Copy the text from the Shortcut’s “Target” field and paste it in the Compile_FAST.bat script:

C:\Windows\SysWOW64\cmd.exe /E:ON /V:ON /K ""C:\Program Files
(x86)\Intel\ComposerXE-2011\bin\ipsxe-comp-vars.bat" ia32 vs2008"

You will need to remove the call to cmd.exe and its switches, leaving you with the name of a
batch file (and possibly some of its arguments):

"C:\Program Files (x86)\Intel\ComposerXE-2011\bin\ipsxe-comp-vars.bat" ia32 vs2008

If you do not want to call this batch file from Compile_FAST.bat, you may remove the line from
the file. However, you must then run Compile_FAST.bat only from the compiler’s command line
window. Please refer to your compiler’s documentation about using ifort and calling it from the
command line.

Figure 12. The properties window for an IVF

command prompt shortcut

Figure 11. An example of finding the IVF

command prompt shortcut

81

Set Local Paths
The second section that must be modified in Compile_FAST.bat is labeled “Local Paths.” This
section needs to be updated with the paths to the source files you are trying to compile. The text
that must be updated is shown in blue in Figure 13.

Run the Script
After you have modified Compile_FAST.bat, you can run it from the command line by typing

Compile_FAST.bat

in the directory where the batch file is stored. Figure 14 shows the screen output after a
successful build using Intel® Composer XE 2011. Notice the title of the command window after
Compile_FAST.bat has been run. The script that you call in the “Set Compiler Internal
Variables” section to set the paths and environment variables for the IVF compiler also modifies
the title of the window. If the title does not say anything about the compiler, please verify that
you have modified Compile_FAST.bat correctly.

Creating FAST with the User-Defined Control Options for Interfacing with GH
Bladed-style DLLs
If you would like to compile FAST with the user-defined control options that include the
interface to GH Bladed-style DLLs, you can use this script to do so. After modifying
Compile_FAST.bat as outlined above, you must also copy the FAST source files named
UserSubs.f90 and UserVSCont_KP and rename them UserSubs_forBladedDLL.f90 and
UserVSCont_KP_forBladedDLL.f90 respectively. In UserSubs_forBladedDLL.f90, you must
comment out subroutines UserHSSBr and UserYawCont, and in
UserVSCont_KP_forBladedDLL.f90, you must comment out subroutine UserVSCont. To
compile, you type

Compile_FAST.bat dll

at the command line. The executable file that is created will end with _DLL.exe.

Figure 13. The “Local Paths” section of Compile_FAST.bat for FAST v7.01.00a-bjj. Text in blue
must be changed by the user before running the script.

REM --
REM ------------------------- LOCAL PATHS --------------------------------------
REM --
REM -- USERS WILL NEED TO EDIT THESE PATHS TO POINT TO FOLDERS ON THEIR LOCAL --
REM -- MACHINES. NOTE: do not use quotation marks around the path names!!!! ---
REM --
REM NWTC_Lib_Loc is the location of the NWTC subroutine library files
REM AeroDyn_Loc is the location of the AeroDyn source files
REM Wind_Loc is the location of the AeroDyn wind inflow source files
REM FAST_LOC is the location of the FAST source files
REM --

SET NWTC_Lib_Loc=C:\Users\bjonkman\Data\DesignCodes\NWTC Library\source
SET AeroDyn_Loc=C:\Users\bjonkman\Data\DesignCodes\AeroDyn\Source
SET Wind_Loc=C:\Users\bjonkman\Data\DesignCodes\AeroDyn\Source\InflowWind\Source
SET FAST_Loc=C:\Users\bjonkman\Data\DesignCodes\FAST\Source

82

Figure 14. The command prompt window after Compile_FAST.bat has been run.

83

Compiling FAST Using Microsoft Visual Studio
Microsoft® Visual Studio is an integrated development environment (IDE) that provides useful
features for editing source code, compiling, and debugging. The following instructions for
compiling FAST have been developed using Microsoft Visual Studio 2008; the steps will be
similar for other versions. Note that the size and location of some of the windows in Visual
Studio may also vary based on your configuration settings.

Open a New Project
Open Visual Studio and create a new project of type Intel® Visual Fortran > Console
Application. Choose the Empty Project template, and select a name and location for the project
before clicking OK. See Figure 15.

Add Source Files
Next, you will need to add the source files for FAST and the other codes (components or
modules) it uses. To keep the source files organized, you can create folders for each of the
components. In the Solution Explorer window, right click on the Source Files folder under
<project name>. Choose Add > New Folder, and a new folder named “NewFolder1” will be
added under the Source Files folder. (See Figure 16.) Rename the folder something descriptive,
such as “FAST” for the FAST source files.

Figure 15. The New Project window in Visual Studio

84

To add the source files for the component, right-click on the folder you have just added and
choose Add > Existing Item… (Figure 17).

In the Add Existing Item window that opens, you must navigate to the folder containing the
source files for that component (FAST in this case). Select all of the source files that you need
from the directory.

Figure 16. Adding new folders for source files in Microsoft Visual Studio 2008. Note that the
Soultion Explorer window may be located in another part of the screen

85

Create new folders under Source Files for each of the other components and add their source
files to your project. When you are finished, your Solution Explorer window will look
something like Figure 18. (Note that if you choose to use the user-defined control options for
interfacing with a GH Bladed-style DLL in FAST v7.01.00a-bjj, your list of FAST source files
will include BladedDLLInterface.f90, UserSubs_forBladedDLL.f90, and
UserVSCont_KP_forBladedDLL.f90. It will not include PitchCntrl_ACH.f90, UserSubs.f90, or
UserVSCont_KP.f90. The file UserSubs_forBladedDLL.f90 is a copy of UserSubs.f90 with
subroutines UserHSSBr and UserYawCont commented out. The file
UserVSCont_KP_forBladedDLL.f90 is a copy of UserVSCont_KP with subroutine UserVSCont
commented out.)

Figure 17. Adding existing source files to a Visual Studio 2008 project.

86

Set Compiler Options
Next, you must set the compiling options for
the project. On the main menu, select
Project > <project name> Properties.
(Note: if you select an individual source file
and then click on Project > Properties, you
will change the properties for only that source
file. Make sure you are changing properties
for the entire project here.)

A <project name> Property Pages window
will open. See Figure 19. In the
Configuration dropdown box at the top of
the window, select “All Configurations” to set
the compiler options for all configurations.

Select Configuration Properties > Fortran
> Data in the box on the left. In the window
on the right, select Use Bytes as RECL =
Unit for Unformatted Files and choose
Yes (/assume:byterecl). (This option is
required for InflowWind’s coherent
structures). Because FAST v7.01.00a-bjj still
has some unresolved issues relating to local
variables and their initialization, you will also
need to set Local Variable Storage to All
Variables SAVE /Qsave, and set Initialize
Local Saved Scalars to Zero to Yes
(/Qzero). (Note that once we find and fix
these issues, we will no longer compile with
/Qsave and /Qzero.) Click OK to save your
changes and close the window. The window
in Figure 19 shows the project properties with
the compiling options changed as necessary.

Figure 18. The source files for FAST
v7.01.00a-bjj listed in the Visual Studio

Solution Explorer window

87

Build the Project
To build your project (create an executable file), you can choose from “Debug” or “Release”
mode (or create your own settings). Debug mode is set to disable optimizations and generate
debugging information. It will compile faster and run slower than Release mode. Release mode
is set to optimize the code for speed. It does not generate debugging information. You can
choose the desired configuration mode by clicking on the dropdown box on the toolbar or choose
Build > Configuration Manager from the main menu.

After you have picked the appropriate configuration, choose Build > Build Solution from the
main menu. The Output window will show your progress. (See Figure 20.) Any errors
encountered during the build process will also appear there.

This step creates an executable file, named by default <project location>\<configuration
name>\<project name>.exe. If you want to change this file’s name, you can do so in the <project
name> Property Pages window. (Select Project > <project name> Properties from the main
menu.) The name of the executable is defined under Configuration Properties > Linker >
General > Output File. See Figure 21.

Note that $(OutDir) in Figure 21 refers to the Output Directory defined under Configuration
Properties > General in the same window. (Remember that any changes you make apply to
only the configuration that is selected at the top of this window.)

Figure 19. The <project name> Property Pages window in Visual Studio with the compiling
options changed for FAST v7.01.00a-bjj

88

Figure 21. The <project name> Property Pages window in Visual Studio, showing the location of
the Output File.

Figure 20. The Output window in Visual Studio after building FAST using the Debug
configuration.

	List of Abbreviations iii
	Nomenclature iii
	Table of Contents iv
	List of Figures vii
	List of Tables viii
	Introduction 1
	Overview 1
	Definitions 2
	Copyright and Licensing 5
	Version Naming 5
	Version Control 5
	Documentation 6
	Commenting the Code 6
	Change Logs 6
	Subversion Commit Logs 7
	User’s Guides and Theory Manuals 7
	Sample Input Files and Test Cases 7
	Writing Source Code 7
	General Requirements 8
	Planning 8
	Module Structure 9
	Meshes 15
	Units 16
	Coordinate Systems 16
	Coupling Modules Together 17
	Handling Errors 17
	Handling I/O 18
	Source Code 18
	NWTC Subroutine Library 18
	Fortran 2003 Standard 18
	Guidelines 19
	Mixed Languages 22
	Testing 22
	Verification 22
	Validation 22
	Version Checking 23
	Testing New Features 23
	Software Distribution 24
	Ongoing Improvements to This Document 25
	References 26
	For Further Reading 27
	Appendix A: Working With Subversion 28
	SVN Repositories 28
	Working Copies 28
	Workflow 29
	Typical SVN Operations 30
	The First Time Through 30
	In an Existing Working Copy 31
	Gotchas 33
	Working with Branches 34
	Additional Information 34
	Appendix B: NWTC CAE Tool Development Policy 35
	Appendix C: Recommended Practices for Code Development Using Subversion 36
	Appendix D: Steps for Maintaining and Developing Software 37
	Appendix E: Module Template 39
	Appendix F: Subroutine Inputs and Outputs for Modules Developed for the FAST CAE Tool Framework 54
	Appendix G: Mesh Module and Types 57
	Type: MeshType 58
	Subroutine: MeshCreate 59
	Subroutine: MeshPositionNode 59
	Subroutine: MeshConstructElement 60
	Subroutine: MeshCommit 60
	Subroutine: MeshCopy 60
	Subroutine: MeshNextElement (mesh traversal) 61
	Subroutine: MeshElemNumNeighbors 61
	Subroutine: MeshNextElemNeighbor (neighbor traversal) 62
	Subroutine: MeshPack 62
	Subroutine: MeshUnpack 62
	Subroutine: MeshDestroy 63
	Accessing a Specific Element and Node Value in a Mesh 63
	Element Names: 63
	Appendix H: FAST Registry for Automatic Code Generation 64
	Description 64
	Syntax 64
	Dimspec Entries 64
	Typedef Entries 65
	Registry Output 66
	Example Registry File 66
	Appendix I: Example Driver Program for Modules in the FAST Modular Framework 68
	Appendix J: Using the NWTC Subroutine Library 75
	Parameters 75
	Routines 76
	Appendix K: Fortran Compilation Options 78
	Appendix L: Instructions for Compiling FAST using IVF for Windows® 79
	Compiling FAST Using the Windows Command Line 79
	Set Compiler Variables 79
	Set Local Paths 81
	Run the Script 81
	Creating FAST with the User-Defined Control Options for Interfacing with GH Bladed-style DLLs 81
	Compiling FAST Using Microsoft Visual Studio 83
	Open a New Project 83
	Add Source Files 83
	Set Compiler Options 86
	Build the Project 87
	Word Bookmarks
	Reference_FASTUsersGuide
	Reference_FASTTheoryManual
	Reference_AIAA_ModularizationFramework
	FigureFASTdiagram
	FigureCoupling
	Reference_GPL30
	Reference_Subversion
	Documentation
	Heading_Planning
	Heading_ModuleStructure
	Footnote_ModuleName_change
	TableSubroutines
	Table_DataTypes
	Heading_Meshes
	FigureCoordinateSystem
	Heading_CouplineModulesTogether
	Heading_HandlingErrors
	Reference_NWTCLibrary
	Reference_Fortran2003
	Testing
	VersionChecking
	TestNewFeatures
	SoftwareDistribution
	Heading_FurtherReading
	AppendixSVN
	Reference_RabbitVCS
	Reference_TortoiseSVN
	Figure_SVNicons
	Figure_SVN_co_linux
	Figure_SVN_co_windows
	Figure_SVN_co_windows_dir
	Figure_SVN_diff_TortoiseMerge
	AppendixPolicy
	AppendixRecommendedPractices
	AppendixCodeMaintenance
	AppendixTemplateModule
	Appendix_TemplateModulePictures
	Appendix_MeshModule
	Figure_MeshElements
	Heading_Meshes_AccessingSpecificElement
	Heading_ElementNames
	Appendix_FASTRegistry
	Appendix_TemplateDriver
	Appendix_NWTCSubroutineLibrary
	Table_NWTCSubs_parameters
	Table_NWTCSubs_routines
	Appendix_FortranCompilationOptions
	AppendixCompilingInstructions_Windows
	Figure_CompileScript_CompilerVariables
	Figure_WindowsShortcutLocation
	Figure_WindowsShortcutProperties
	Figure_CompileScript_LocalPaths
	Figure_CompileScript_CommandWindow
	Figure_VS_NewProject
	Figure_VS_AddFolders
	Figure_VS_AddExisting
	Figure_VS_SolutionExplorerItems
	Figure_VS_PropertyPage_Data
	Figure_VS_OutputWindow
	Figure_VS_PropertyPage_Linker

