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CHAPTER I 

INTRODUCTION 

Since the publication of "Applied Aerodynamics of Wind Power Machines ,,1 

in 1974, additional work has been accomplished on analytical performance per

diction methods for wind turbines. This report summarizes the state-of-the

art of performance prediction methods for both horizontal and vertical axis 

wind turbines. 

Strip theory methods for horizontal axis wind turbines are evaluated for 

various tip loss models in Chapter 2. A comparison of these tip models is 

developed for the ERDA-NASA MOD-O rotor. The occurrence of multiple solutions 

in strip theory analysis is discussed and illustrated. Chapter 2 also treats 

the performance of high-solidity turbines such as the Chalk design. Correc

tions to the strip analysis techniques are developed and incorporated into 

the analysis used for conventional horizontal axis wind turbines. The ~re

dicted performance of the Chalk Turbines is presented and discussed. 

The configuration and performance of optimum horizontal axis wind tur

bines is addressed in Chapter 3. While optimization techniques are well 

developed for propellers, the situation is not as straightforward for wind 

turbines. Optimization schemes are developed and discussed and comparisons 

with the MOD-O rotor are made. Performance at off-design conditions is also 

examined. 

The final two chapters deal with performance prediction methods for 

vertical axis wind turbines. In Chapter 4 the performance model for the 

Darrieus Rotor is developed. Both linear and non-linear theories are devel

oped. Multiple solutions are found to occur for Darrieus Rotors in the same 
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manner as occurs for horizontal axis rotors. This flow model is compared to 

existing experimental data and shown to yield excellent agreement. 

Chapter 5 contains an analytical model of the flow in a Savonius Rotor. 

The flow model is shown to predict the essential features of flow in Savonius 

Rotors with consideration of viscous effects. 

1.1 WIND TURBINE TEST DATA 

The amount of test data available for wind turbines is surprisingly small 

and because of the scarcity of test data, performance analysis techniques 

often lack adequate verification. In the case of horizontal axis wind tur-

2 3 bines there exist only two series of wind tunnel model tests' that are fully 

documented. Figures 1.1.1, 1.1.2 and 1.1.3 illustrate presently available test 
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Figure 1.1.1 Experimental Data Envelopes for Horizontal Axis Machines. 
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data for various types of wind powered machines. Figure 1.1.3 illustrates the 

maximum values of the power coefficient that have been measured for each general 

type of machine. Again the present lack of experimental data for horizontal 

axis wind turbines is noted, particularly at high tip-speed ratios. In each 

chapter, available experimental data is compared to theory. The blockage effects 

for wind tunnel testing of wind turbines are large and in many cases in litera-

ture, no mention is made of the magnitude of the blockage corrections. Accord-

ingly, the next section includes a discussion of wind tunnel corrections. 
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Figure 1.1.2 Experimental Data Envelopes for Vertical Axis Machines. 
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Figure 1.1.3 Maximum Measured Power Coefficient for Various Type Wind Turbines. 
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1.2 WIND TUNNEL CORRECTIONS FOR WIND TURBINE TESTING 

The wind tunnel imposes a constraint on the wind turbine by limiting the 

extent of the free air stream. The flow past the wind turbine is constrained, 

and the uniform axial velocity V which occurs in front of the wind turbine 
00 

differs from that which would occur if it was operating under the same torque 

conditions in the free stream. In general, it turns out that the equivalent 

free stream velocity Viis less than that of the wind tunnel. The magnitude 

of this reduction can be determined by applying the axial momentum theory, 

which neglects the rotational motion of the slipstream. Using the method 

12 developed by Glauert for propellers, the correction for blockage may be deter-

mined for wind turbines. Figure 1. 2.1 gives the power coefficient corrections 

as a function of the observed thrust coefficient. 
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CHAPTER II 

PERFORMANCE AERODYNA~ICS OF HORIZONTAL AXIS ROTORS 

INTRODUCTION 

The propeller type wind turbine can be considered to be an airscrew 

which extracts energy from the driving air and converts it into a mechanical 

form in contrast to a propeller which expels energy into the air from another 

energy source. The similarity of the propeller and the wind turbine enables 

the same theoretical development to be followed for performance analysis. 

Propeller theory developed along two independent methods of approach, one of 

which has been called momentum theory and the other, blade e~ement theory. 

Momentum theory was first developed by W. J. M. Rankine1 in 1865 and 

later improved by R. E. Froude 2 . The basis of the theory is the determin-

ation of the forces acting on the rotor to produce the motion of the fluid. 

The theory has been useful in predicting ideal efficiency and flow velocity, 

but it gives no information concerning the blade shape necessary to generate 

the fluid motion. Rotational effects of the wake were included in the theory 

3 by A. Betz . 

Blade element theory was originated by W. Froude4 in 1878 and developed 

by S. Drzewiecki5 . The approach of blade element theory is opposite of that 

of momentum in that the concern is with the forces produced by the blades as 

a result of the motion of the fluid. It was hampered in its original develop-

ment by lack of knowledge of sectional aerodynamics and mutual interference 

of blades. 



Modern propeller theory has developed from the concept of free vortices 

being shed from the rotating blades. These vortices define a slipstream 

and generate induced velocities. The theory can be attributed to the work 

of Lanchester6 and Flamm7 for the original concept; to Joukowski 8 , for 

. d d l' l' A B 9 f ... L P d 110 In uce ve oCIty ana YS1S; to . etz, or optImIzatIon; to . ran t 

and S. Golds-tein l1 , for circulation distribution or tip loss analysis; and 

H. Glauert 12 , 13 and 14, E. Pistolesti lS , and S. Kawada16 , for general 

improvements. The theory has been referred to by a number of names: 

vortex theory, modified blade element theory, and strip theory. 

This :;ts the most frequently used theory for performance analysis of 

propellers and helicopter rotors, although m?re elegant methods of analysis 

are available. The technique, which assumes local 2-D flow at each radial 

rotor station, is- a design-analysis approach in which the airfoil sectional 

aerodynamics, chord and pitch angle are required in order to determine the 

forces and the torque. 

It has been assumed that strip theory approaches will be adequate for 

wind machine performance analysis; however, experimental verification is 

sparse and clouded by the fact that the available test data has been taken 

in a Reynolds Number range for which the section aerodynamics are quite 

sensitive to free stream turbulence. One reason for the belief that strip 

9 

theory is expected to give acceptable results is the fact that a wind turbine 

wake expands rather than contracts. At low advance ratios (high tip speed 

ratios}, propellers and helicopter rotors have been observed to shed strong 

tip vortices. Since the wake is contracting, the position of this vortex 

in the wake is inboard of the tip and strong interaction occurs between the 

tip vortex and the flow in the plane of the blade. The resulting radial 
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distribution is found to be appreciably different than the force distri

butions predicted by strip theories. Because most wind turbines operate 

at high tip speed ratios, a strong interaction is expected; however, due 

to the expanding wake, the tip vortex moves outboard negating a strong 

interaction. From an outboard position in the wake, the tip vortex gener

ates induced velocities that decrease the local angle of attack, in addition 

these velocities are of lower magnitude than for inboard vortex positions 

of a contracting wake. 

Strip theory analysis requires some modification because of the pattern 

of shed vorticity, even in the absence of tip vortices. The shed vorticity 

interacts with the blade flow near the blade tip. So-called tip losses 

have been treated in a variety of approaches, the simplest of these being 

to reduce the maximum rotor radius to some fraction of the actual radius 

characteristically on the order of 97% of the actual radius. Prandtl and 

Goldstein have analyzed flow about lightly-loaded propellers (negligible wake 

contraction) and developed models for the reduction of circulation due to 

wake interaction at the tips. 

The basic theoretical development of strip theory is presented in this 

chapter, along with the use of tip loss models and a comparison of results 

using different medels. 

2.1 AXIAL MOMENTUM THEORY 

The function of a wind turbine is to extract energy from the air and 

to produce mechanical energy which later may be transformed into other forms 

of energy. Energy losses, in addition to the energy extracted, are attributed 
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to the rotational motion of the fluid that is imparted by the blades and 

frictional drag. As a first approximation to determine the maximum possible 

output of a wind turbine, the following assumptions are made: 

1. Blades operate without frictional drag. 

2. A slipstream that is well defined separates the flow passing 

through the rotor disc from that outside the disc. 

3. The static pressure in and out of the slipstream far ahead of 

and behind the rotor are equal to the undisturbed free-stream 

static pressure (P2 = poo)· 

4. Thrust loading is uniform over the rotor disc. 

5. No rotation is imparted to the flow by the disc. 

Applying the momentum theorem to the control volume in Figure 2.1.1, where 

the upstream and downstream control volume planes are infinitely far removed from 

the turbine plane, one obtains; 

Figure 2.1.1. Control Volume of a Wind Turbine 
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-T = Momentum flux out - momentum flux in 

(2.1.1) 

Also from pressure conditions, the thrust can be expressed as: 

+ -T = A(p - P ) (2.1.2) 

Now applying Bernoulli's equation to flow upstream of the wind turbine, 
one obtains 

..: 
+ p 

and downstream of the wind turbine, 

or by subtracting these equattons 

+ 
p - 2 

P = =Y2P (V 
co 

Substituting into equation 2.1.2 gives 

Now, equating equation 2.1.5 with 2.1.1 provides 

or 

V 
u = 

co 

2 

+ V 
2 

(2.1. 3) 

(2.1.4) 

(2.1.5) 

(2.1.6) 

This result states that the velocity through the turbine lS the average of 

the wind velocity ahead of the turbine and wake velocity aft of the turbine. 

Now defining the axial induction factor a by 

u == V (I-a) 
00 
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and using the definition of a and equation 2.1.6 gives 

then the wake velocity can be expressed as 

The wake induced velocity is twice that of the induced velocity in the 

plane of the rotor. This also may be concluded by constructing a system of 

helical vortices and calculating the induced velocity by utilizing the Biot -

Savart relation. (see Section 2.10) 

Therefore 

a = 1 -
(2.1. 7) 

which implies that if the rotor absorbs all the energy, i.e., V2 = 0, then a 

would have a maximum value of!. Because power is given by mass flow rate 

times the change in kinetic energy, the power, P, is 

• co 2 1 3 2 (
V2 v2) 

P = mL'lK.E. = pAU 2" - 2"" = Yz.pAV
co 

4a(1 - a) 

or 

dP 
Maximum power occurs when da - ° 

dP _ 2PAV3 (1 _ 4a + 3a2) = 0 da - co 

(2.1. 8) 
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or 

a = 1 or 1/3 

Maximum power occurs when a = 1/3 so 

P = 16/27 (~AV3) max 00 

The coefficient of power* equals approximately 0.593. 

* 
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2.2 MOMENTUM THEORY FOR A ROTATING WAKE 

The initial assumptions of axial momentum theory considered no rotation 

was imparted to the flow. It is possible to develop simple and useful re-

lationships if we consider the angular velocity, w, imparted to the slip-

stream flow to be small in magnitude when compared with the angular velocity, 

n, of the wind turbine rotor. This assumption maintains the approximation of 

axial momentum theory, that the pressure in the wake is equal to the free-

stream pressure. 

Figure 2.2.1. Flow Diagram of a Wind Turbine. 

Writing the energy equation for the flow illustrated in Figure 2.2.1, it can 

be shown that the rotational kinetic energy reduces the power that can be 

extracted. 

K.E. 1 t' 1 trans a lona (1) 
= Power Extracted + K.E. l' 1 + K.E. . 1 

trans atlona (2) rotatlona (2) 
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The power is equal to the product of the torque acting on the rotor, 

Q, and the angular velocity of the rotor,~. In order to obtain maximum 

power it is necessary to have a high angular velocity and low torque 

because high torque will result in large wake rotational energy. An 

angular induction factor is defined as: 

a' = angular velocity of the wind at the rotor = 
twice the angular velocity of the rotor 

I 
I 
1\ ,,;'-~-
1'1/·"· ..... 

/":'Y' ...... 
1/ ~...... -
t \ .... -
\ 

Figure 2.2.2 Rotor Blade Element 

(2.2.1) 

Using the angular ring in figure 2.2.2, and writing control volume relations 

for momentum and moment of momentum, we obtain: (taking into account blade 

coning) 

where r
L 

= rcost/! 

dr . = dr cost/! 
L 
t/! = coning angle. 



Assuming that 

The moment of momentum equation becomes 

• 2 
dQ = dm(Vtr) = 2~rLPurLw drL 

3 
= 4~rLPVoo(1-a)a'Q drL 

As dP = Q dQ 

R 

P = J Q dQ 

o 
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(2.2.2) 

(2.2.3) 

Now, substituting equation (2.2.3) into the integral equation for power: 

Rcosl/J 

P = J 4npV ooQ2 (1 

o 
_ r

L 
Q 

defining xL = V as the local tip speed ratio 
00 

and X == RQ cosl/J where R is the rotor radius 
l/J V 

00 

we obtain 

l PAV~ 
2 

P = 
4 cos <p 

(1 - a)a' 3 
X2 xLdxL · 

1/J 
0 

(2.2.4) 

(2.2.5) 

(2.2.6) 
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where A 2 = 'ITR . The coefficient of power becomes 

Xw 
8 2 J 3 C = -- cos W x a' (1 -

P X2 L 
W a 

(2.2. 7) 
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2.3 BLADE ELEMENT THEORY 

By determining the forces acting on a differential element of the blade 

and then integrating over the length of the blade·, torque and thrust loading 

of a rotor may be determined analytically. The fundamental assumptions are 

that there is no interference between successive blade elements along the 

blade and that the forces acting on a blade element are solely due to the 

lift and drag characteristics of the sectional profile of a blade element. 

In an actual wind turbine, the blades may be made so that they cone. 

Without coning the force coefficients can be represented as shown in Figure 

2.3.1 (1/1:::0) and with coning as in Figure 2.3.1 (1/IrfO). Note that only the 

normal force coefficient is affected by coning. 

J 
Cn = Cn COS '" 

; , ",'" 

r ----+--.1. dr~ 
r (I-a)Voo 

Figure 2.3.1 Blade Coning 

/ 

--_I Z 
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The force coefficients in the coned position may be written as 

cos~ cos¢ +CD sin~ cos~ 

sin~ - CD cos~ 

Also, the radial distance must include the effects of~. Thus 

r L = r cos~ 

drL = dr cos~ 

By using the velocities determined from the momentum theorem and 

applying them to the blade element, the velocity diagram, Figure 2.3.2 

is obtained. 

Figure 2.3.2 Velocity Diagram 



From Figure 2.3.2, one can see that 

tan<j> 

a = <j> - e 

C = (C
L 
cos<j>~ + CDsin<j» n 

C' = C cos1/! n n 

Ct = CL 
sin<j> - CDcos<j> 

By determining the thrust acting on the blade element, one obtains 

dT = 
2 Bc1.pW C' 

2 n 

dr
L 

cos1/! 

where B = number of blades 

c = chord 

(2.3.1) 

The torque acting on the blade element is given by the following expression 

dQb1ade element 
2 dr r 

= rLBc(tpW )C
t 

~ cos1/! (2.3.2) 

21 
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2.4 STRIP THEORY 

Utilizing both the Axial Momentum and Blade Element Theories, a 

series of relationships can be developed to determine the performance 

of a wind turbine. 

By equating the thrust determined from the momentum theory equation 

(2.2.2) to equation (2.3.1), the thrust determined by blade element theory, 

one obtains for an annular element at radius r
L

, 

or 

so 

(I-a) (2a) 

dT = dT momentum blade element 

2 drL = Bc!p W Cn' --,-I. cos,!, 

0L W2 C~ 
= '4 V2 cos\); 

co 

where 

Bc 
°L = 

1fr L 

and 

Bc 
CJ = 

m 1fR cos\); 

From Figure 2.3.2 one can write 

(l-a)V cos\); 
co 

sin¢ = 
W 

(2.4.1) 

(2.4.2) 

(2.4.3) 
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substituting this expression into equation 2.4.1 for the relative velocity W 

or 

O"L C~ (l-a) 2 
2a(1-a) = -----::----

4 sin2
<j> 

2 cos lji 

coslji 

(2.4.4) 

Expression (2.4.4) now relates the axial flow conditions to the blade 

element geometry. By considering the mome~t of momentum, we: can likewise 

develop a relationship between the rotational flow and blade element forces. 

Equating the angular momentum determined from the momentum theory, 

equation (2.2.3) with equation (2.3.2) of blade element theory one obtains 

dQ . angular momentum = dQblade element 

or 

1. 2 dr = r LBcP2 W C ,I. t cos,!, 

or 

(2.4.5) 
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From Figure 2.3.2 

(l-a)V cos1jJ 
co 

sin~ = W 

cos~ (l+a' ) 
rLQ 

= W-

substituting into equation (2.4.5) 

or 

2a' . 
-1--' sln~ cos~ +a 

a' _ O"LCt 
l+a' - 8 sin~ cos~ (2.4.6) 

Equations (2.4.4) and 2.4.6), which determine the axial and angular inter-

ference factors contain drag terms. It has been an assumption that the 

drag terms should be omitted in calculations of a and a' on the basis 

that the retarded air due to drag is confined to thin helical sheets in 

the wake and have Ii ttle, if any, effects on the induced flows. Therefore 

Cn and Ct used in calculation of a and a' are redefined as 

so Equation (2.4.4) becomes 

a 
I-a 

2 
O"L CL cos 1jJ cos~ 

= --------~-------
8 . 2,l, Sln 't' 

(2.4.7) 



and Equation (2.4.6) becomes 

a' _ crL CL 
l+a' - 8cos</> (2.4.8) 

By using the relations developed, a and a' can be determined for 

a given differential element by the following iteration process: 

1. Assume a and a' 

2. Calculate </> </> = tan-l[(l-a)cos~/(l+a')x] 

3. Calculate ~ ~ = </> - e 

4. Calculate CL, CD' Ct ' Cn 

5. Calculate a and a' ; equation (2.4.7) and equation (2.4.8) 

6. Compare to previous values of a and a' if equal, stop 

7. Go back to 2. 

Having determined a and a' by the above iteration process, we also have 

calculated Ct. and C. We can determine torque, thrust, and power from the 
n 

following equations: 

222 
X~ 

!pV 'lTR cos ~ J am (W/Voo) 2 
00 

T = C dXL Xlj! n 

0 

Xlj! 

8 J 3 C = 
X2 

XL a' (l-a)dxL p 
lj! 

0 

25 
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The above equations do not include tip loss and blade interference 

effects. Modifications to account for these effects as well as defining 

sectional aerodynamics are necessary for a meaningful solution to the system 

of equations. These areas are developed in subsequent sections of this 

chapter. 
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2.5 MULTIPLE SOLUTIONS IN STRIP THEORY 

The equations for the induction factors a and a' do nbt always have 

. 1 . 1· 17 a slng e unlque so utlon This can be illustrated by graphically 

examining the blade force and momentum terms in equation (2.4.1). If we 

defined a local force coefficient, CT ' as 
L 

(2.5.1) 

both sides of equation (2.4.1) may be expressed in dimensionless form. 

The momentum contribution becomes 

c ) = TL 
momentum 

4a(1-a) 

and the blade force contribution becomes 

CT ) . 
L blade 

a C" (I-a) 2 
L n 

= -.-....:..:-~-
2sin2

<j> 

(2.5.2) 

(2.5.3) 

The momentum equation is seen to be parabolic while the blade equation 

depends on the relation between the lift coefficient and the angle of 

attack, the local solidity, and the tip speed ratio. 

The equation for the blade force may be simplified considerably by 

neglecting the induced rotation. Then equation (2.5.3) becomes 

CT ) 
L blade 

= 
xaLCL~2+(1-a)2 

2 (2.5.4) 
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where x is the local tip speed ratio rLrl/V
oo

' Thus both equations may be 

expressed in the form 

The blade equation, of course, also requires specification of the blade 

configuration in terms of the parameters G
L

, x and CL(a). For the case 

where CL = 2TIsina, the blade equation becomes a straight line passing 

through the point CT = 0, a = 1 when the pitch angle is zero. The 
L 

slope of the blade equation depends upon the local solidity and the local 

tip speed ratio. There is then for C_ = 2TIsina, one and only one solution 
L 

that satisfies both the momentum and blade equations. 

For other lift coefficient. variations, however, multiple solutions 

may occur. Figure 2.5.1 shows the momentum and blade force equations 

plotted in dimensionless form. It may be observed that the blade equation 

retains the general shape of the lift coefficient versus angle of attack 

curve. While only two lift coefficient variations are illustrated it is 

apparent that under some conditions there may be three valid solutions 

to the strip theory equations. Values of the axial induction factor a 

greater than 0,5 are not valid because such conditions imply a wake 

velocity which is negative. 

Figures 2.5.2 through 2.5.4 show the effects of blade pitch angle, 

tip speed ratio and solidity on the blade force equations. Again, it is 

apparent that under some conditions three valid solutions exist to the 

strip theory equations. The method outlined in Section 2.4 will converge 

to either solution number one or solution number three but will not 

converge to the middle solution. The reason for the lack of numerical 

convergence for the middle solution is that when dCTL) < dCTL ) the iteration 

da blade da momentum 
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Figure 2.5.1 Dependence of Blade Force Equation on Lift Curve Characteristics 
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converges, and when 

diverges. 

dCTL ) 

da b 
> 

dCTL ) 

da m 
, the iteration sequence 
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The lift curve selected is meant to be representative of a broad class 

of lift curves for which the lift has a sharp maximum and then levels off. 

While it is recognized that the numerous uncertainties make it improbable 

that performance test data can verify which other solutions occur (if any!) 

this discussion has been presented to enable performance and structural 

analysts to be aware of the multiple solutions possible in strip theory 

analysis. 

As a guiding principle, it is suggested that the solution to be chosen 

in the case of multiple solutions is the one that maintains continuity of 

angle of attack along the blade span. 
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2.6 TIP LOSS CORRECTIONS 

Strip theory, as previously developed, does not account for the 

interaction of shed vorticity with the blade flow near the blade tip. 

This "tip loss" or circulation reduction near the tip can be explained 

by the momentum theory. According to the theory discussed previously, 

the wind imparts a rotation to the rotor, thus dissipating some of its 

kinetic energy or velocity and creating a pressure difference between 

one side of the blade and the other. Because the pressure is greater 

on onestde, air will flow around the blade tips as shown in Figure 2.6.l. 

This means that the circulation is reduced at the tip and as a consequence 

the torque is reduced. 

Figure 2.6.1 Tip and Hub Losses-Flow Diagram 
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Because the blade element forces at the tip contribute greatly to the 

torque and thus to the overall performance of the wind turbine, the tip 

flow is very important to the analysis. Tip losses have been treated in a 

variety of different manners in the propeller and helicopter rotor industry. 

The simplest method being to reduce the maximum rotor radius by some fraction 

of the actual radius, which in helicopter studies is of the order of O.03R. 

Other relations have been developed that calculate this fraction of reduction 

based on the tip chord length. A more detailed analysis was done by Prandt1 

as a method for estimation of lightly loaded propeller tip losses. Later, 

Goldstein developed a more rigorous analysis. A comparison of the circula-

tion distribution of a two-bladed propeller using the Prandt1 and Goldstein 

methods is shown in Figure 2.6.2. Figure 2.6.3 shows numerical analysis of 

a wind turbine design using different tip loss models. As can be seen, there 

are substantial differences between methods and the application of these 

methods to wind turbines raises the question of which method is most accurate. 
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Figure 2.6.3 Performance Variation with Tip Loss Model. 

Due to the lack of verification, the theoretical and computer analysis 

has options of either no tip loss, Prandtl's tip loss, Goldstein's tip 

l6ss or the effective radius concept of tip loss. 



PRANDTL TIP LOSS FACTOR 

10 L. Prandtl developed a method to approximate the radial flow 

effect near the blade tip. The basis of his approximation was to replace 
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the system of vortex sheets generated by the blade with a series of parallel 

planes at a uniform spacing, !!', where!!' is the normal distance between suc-

cessive vortex sheets at the slipstream boundary, or 

n 2'ITR . ,j, 

N = -B- Sln 't'T 

Here B represents blade number and <PT is the angle of the helical 

surface with the slipstream boundary. Thus, the flow around the edges 

of the vortex sheets could then be approximated as the flow around the 

edges of a system of parallel planes. 

where 

Prandtl's factor is defined as 

F 
P 

2 -f 
= - arc cos e 'IT 

f = B R-r 
2" R sin <PT 

The expression for f can be suitablY approximated by writing rsin<j> in place 

of Rsin<PT, because local angles of <P are more convenient in calculation 

procedures. Prandtl's approximation, as one can see from Figure 2.6.2, is 

sufficiently accurate for high tip speed ratios when the number of blades 

exceeds two. Of course, it should be remembered that the approximation 

was developed for a lightly loaded propeller (contraction negligible) and 

that the vortex system is a rigid helix, an optimum condition for propellers. 

Neither of these conditions are necessarily valid for wind turbines. 
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GOLDSTEIN TIP LOSS FACTOR 

Go1dstein1l developed a more accurate analysis of tip loss for 

propellers by determining the circulation along the blade in terms of 

the induced velocity for a rotating blade. He also ignored contraction 

and utilized the rigid helix vortex representation. His solution was 

obtained by solving Laplace's equation with suitable boundary conditions. 

Goldstein's tip loss factor is 

2 
K = 1 + II rQ 

2 'If\)W 
II where 

r 

R 

\) 

II 

r 

a 
m 

A m 

E: 
m 

I (x) 
n 

T1 (n) ,n 

rQ 
'If\)W 

= angular velocity of rotor 

= local radius 

= maximum blade radius 

= advance velocity of helical vortex surfaces 

= velocity of advance 

= local tip speed ratio 

= tip speed ratio of Totor 

= bound circulation around the blade section 

= coefficient in r distribution 

= approximation coefficient to a .' s m 

= correction factor to approximation coefficient, A 
m 

= modified Bessel function of 1st kind 

= modified Lomme function or Goldstein function defined in Ref. 11. 

00 

= G(ll) - ~ L: 
'If 

m=o 

2 
II 

(_o_A 
1

2m +ll 
o 

I 2m+1 (2m + 1 ll) 
- E: ) 

m 
I2m+1 (2m + 1 llo) 



]12 8 
G (]1) = ---'---=- L: 2 - 2" 

1 + ]1 'IT m=O 

00 

2 

F2m+l Cu ) 

2 (2m+l) 

F2m+l (u) = ]1 2 - T (2m + 1 ]1) 

1 
1,2m+l 

+ ]1 

As one can see from Figure 2.6.2, Goldstein's analysis should be used 

for the one and two-blade cases and for low tip speed ratios. A disadvant-

age of this method is the complexity of the solution which involves 

Bessel functions, but with the use of a digital computer and suitable 

approximations it can be easily handled. 

EFFEcnVE RADIUS TIP LOSS CONCEPT 

The tip los·s model that has been used by NASA and the helicopter 

industry is one in which the rotor radius is reduced to an effective 

radius, R : 
e 

R = R • B 
e 0 

where B is a constant (input) tip loss factor. 
o 

Then with R defined, radial integration proceeds inward from the tip, 
e 

setting CL = 0 at all integration steps greater than RE. For specific 

integration around R , the integration step is changed to evaluate condi
e 

tions at Re and let CL = C
LF 

* CL at that station, where 
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as shown in Figure 2.6.4. 
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Figure 2.6.4 Variation Function for Lift Coefficient using 
Effective Radius Concept. 

TIP LOSS FACTOR APPLICATION 

The application of Prandtl's or Goldstein's tip loss factor to 

previous developed strip theory is of great importance. The tip correc-

tion represents physically the fact that the maximum decrease of axial 

velocity 2aV in the slipstream occurs at the vortex sheets and the 
co 

average decrease is axial velocity in the slipstream is only a percentage 

of this velocity. Therefore equations (2.2.2) and (2.2.3) of axial 

momentum theory assume the forms: 

dT . 2 -- = 4TIrpV (l-a)aF dr co 
(2.2.2) 

(2.2.3) 



In combination with blade element theory, equations (2.4.7) and (2.4.8) of 

general strip theory assume the forms: 

a' 
l+a' = 

. 2 
O"L CL cos 1jJcos ~ 

8F sin2</> 

O"LCL 
8F cos</> 

(2.6.1) 

(2.6.2) 

Another application approach has been suggested by Wilson
18

. 

Since thrust is determined by 

dTmomentum = dTblade element 

Consider the induced axial velocity to be localized at the rotor blade in 

a manner similar to the induced rotational velocity. 

&V = 2aFV
oo 

so we obtain 

then 

d"L CL cos~ 2 
(1 - aF) aF = -----::,---- (I-a) 

8sin2~ 
_ S(1_a)2 

2S + F - / F2 + 4SF (1 - F) 
a = --------------~--~----~ 

2 (8 + F2) 

and a' is as previously defined (2.5.2) 

As F -+ 1 
8 

a-+--
1 + 8 

whereas when F -+ 0 

a -+ 1 

Thus U = (l-aF)V and 
00 

where 8 

(2.6.3) 
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Because there is uncertainty as to which approach most accurately 

corrects the basic strip theory, both methods are considered in the 

analysis. The first method discussed being referred to as the first 

order or standard method of tip-loss application and the second method 

suggested by Wilson as the second order method of tip loss application. 

HUB LOSS (INNER BLADE TIP LOSS) EFFECTS 

Another factor is the inner blade tip loss, when there is no hub. 

Prandtl's tip loss formula has been applied in the following way to account 

for this, and is considered sufficiently accurate for this purpose. 

2 -f 
F = - arc cos e 

'IT 

where 

r hub = radius of hub 

This is applied to the general strip theory by defining the tip loss 

factor as 

FTotal = FTip * FHub 

and applying either the first order or the second order method to the 

strip theory. 
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2.7 CASCADE THEORY 

For high solidity wind turbines, it is necessary to account for flow 

blockage of the air as it passes through the turbine blades and also 

to account for the finite chord of the blade. The velocity of the air 

relative to the blade element is the resultant of the velocity through 

the wind turbine plane of rotation, V (I-a), and a rotational component 
00 

Qr(l-a'} as shown in figure 2.2.2. If at a given radius of the turbine, 

r, the circumference can be unrolled and represented as a flat surface 

as shown in Figure 2.7.1. The blade elements are represented as a 

cascade of airfoils along an axis LL, where the distance between airfoils 

sections is 2'ITr/B. The cascade of airfoil sections representing B 

blade elements of the turbine must be repeated to form an infinite cascade 

of airfoils. 

,2;'1 
-------

I 
v. (I-a) 

Figure 2.7.1 Cascade of Airfoil Sections 



42 

Immediately in front of the wind turbine, the effective axial velocity (Free 

stream velocity minus the axial induction velocity) and the rotational velocity 

define the velocity state as shown in Figure 2.7.2. As the flow enters the 

cascade of airfoils, the axial velocity must increase to satisfy continuity since 

the cross sectional area of the channel decreases. As the flow proceeds, the 

tangential component of induced velocity increases from zero at the leading edge 

to (2a'~r) at the trailing edge. As the flow passes the cascade, the tangential 

component of velocity remains unaltered, while the axial component must decrease 

again by continuity; because of this, the flow traces a curved path which effec-

tively increases the camber of all sections. 

The following assumptions are made as given by McCormick
19 

for propellers: 

1. The tangential velocity varies linearly from 0 at the leading edge to 

2a'~r at the trailing edge. 

2. The flow angle e is the slope of flow at any point at a distance y 

from the leading edge. 
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Figure 2.7.2 Flow geometry of a cascade of airfoil sections. 



Therefore 

V (I-a) 
00 

tan e = ------
nr (1 + 2 r. a') 

c 

(2.7.1) 

and the change in e from the leading edge to the trailing edge is 

-1 V oo(l-a) 
~e = tan nr(1+2a') -. tan 

-1 Voo (I-a) 

&ir 

The effective change in the camber ratio become 

(2.7.3) 

For a circular arc airfoil, this corresponds to a reduction in the angle 

of attack of the zero lift line of 

M 
~a = 4 

EFFECT OF THICKNESS 

(2.7.4) 

To consider the effect of thickness, the airfoil can be approximated 

with an ellipse of the same thickness to chord ratio. Let us define: 

[2 (c~2) 
y 

2 1/2 
t = t (c/2) ] (2.7.5) 

max 

Bc 
(J = 1TR 

x = r/R 

X 
R&i 

= 
V 

00 

Y = distance from the leading edge 

4.3 
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From continuity 

2 1/2 
2'IfTV = V(y) {21Tr - Bt [2( Y/7) -. (~,] } 

00 max i c _ c/2) 

and 

or 

then 

8 = tan -1 V(y) 
wr 

-1 I/X = tan ------'-----:---,,;-.....-:=--
crt 2 1/2 

max [(t_) _ (I)] } 
xc c c 

dz -1 1 
dy = 8 - tan 

Xx 

Integration gives 

c 

J -1 1 
Z = C8-·tan Xx) dy max 

a 
which leads to 

!J.a = 

or 

z max 
c 

1 

I (8-tan -1 ix) d (f) 

a 

t 
max 

c 

(2.7.6) 

In performance calculations, the sectional angles of attack are 

reduced by the amounts given by expressions (2.7.4) and (2.7.7). 



2.8 HIGH SOLIDITY WIND TURBINE ANALYSIS 

The Chalk Wind Turbine invented by Thomas O. Chalk, marketed by 

the American Wind Turbine Company as the SST (Super Speed Turbine) and 

commonly referred to as the Bicycle Wheel Wind Turbine has been analyzed 

using the analysis previously discussed including the cascade corrections. 

The design specifications used appear in Table 2.8 .. 1. The sectional 

aerodynamics for the N60 airfoil were used because of the availability of 

low Reynolds Number data20 and because of the great similarity of 

the N60 airfoil to the Clark Y airfoil. In addition, the analysis 

utilized a Prandtl-tip loss model. 

TABLE 2.8.1 

BICYCLE WHEEL WIND TURBINE SPECIFICATIONS 

15 ft. 3 in. 
5 ft. 3 in. 
5 ft. 
48 
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Outside diameter 
Inside diameter 
Length of blades 
Number of blades 
Chord of blades 
Blade pitch 

Blade twist 
Support wires 
Number of wires 

9° outside r~m) referenced to 
3.475 in. { } 

18° inside rlm rotor plane 
9° 

Length of hub in axial 
direction 

Airfoil 

0.062 in diameter 
not covered by blades = 96 

::: 2 ft. 
Clark Y 

Figure 2.8.1 shows as plot of C versus tip speed ratio which is 
p 

equivalent to a plot of power versus RPM at constant wind velocity. 

Figure 2.8.2 is a plot of C /X3 versus l/X, which is equivalent to a 
p 

graph of power versus wind-speed at constant RPM or Figure 2.8.3. 
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When the analysis was examined it was observed that the rapid decrease 

in power at high wind speeds is caused by aerodynamic stall and not by 

the drag of the wires, as originally conceived. At high tip speed ratios 

the windmill brake/vortex ring states are entered, a state of operation 

not covered by the analysis. 

Preliminary experimental data obtained by Professor Dennis K. 

McLaughlin of Oklahoma State University is plotted in Figure 2.8.1. 
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Figure 2~8.1 Power Coefficient versus Tip Speed Ratio for Chalk Wind Turbine 



POWER VS. WIND VELOCITY AT CONSTANT 
RPM FOR THE CHALK WIND TURBINE 
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Figure 2.8.2 Power versus RPM at Constant Wind Velocity for the Chalk Wind 
Turbine 
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Figure 2.8.3 Power verus Wind Speed at Constant RPM 
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2.9 VORTEX RING/WINDMILL BRAKE STATE 

The flow model developed by strip theory breaks down when the axial inter-

ference factor a exceeds 1/2*. This may be illustrated as sho"ffi in Figure 

2.9.1 which shows the momentum equation and the blade element equations for 

zero drag and C
L 

=2TIsina. The boundary between the momentum theory and vortex 

ring/windmill brake state can be expressed approximately by the relation 

where 

> 1 r e - 2x - ---2 
Bcx 

e _ ange of zero lift measured from the plane of rotation 

r~ 
x = local tip speed ratio, V-

00 

r = local radius 

c _ local chord 

B = number of blades 

PROPELLOR ~-4-.. WINDTURBINE 
2.0 ....---..,-------:1-----...,..-----.-------. 

EQUATION 

1.01-----1-----.p.....,----::::ooo-!-..,..----.J-------,1 

O~--~------~------4-------~~--~ 

-1.01-----+----1-----1------+-----+--------1 

-0.5 o 0.5 1.0 1.5 

INDUCED AXIAL VELOCITY 

V. 
Figure 2.9.1 Graphic Display of Equations used in Strip Theory 

* Actually when (a F) 2' 1/2. 
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The flow field for the vortex ring/windmill brake state for wind 

turbine has not been determined. The flow field is distinctively different, 

however, from the flow model of the strip theory model and the previous 

approach is not valid for this area of operation. 

21 Empirical work done by H. Glauert ' and others, redefined in. terms 

of an average axial interference factor shows the deviation from momentum 

theory as shown in Figure 2.9.2 for the overall thrust coefficient, CT' 
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2.10 INDUCED VELOCITY VARIATION 

The variation of the axial induced velocity with distance from the 

turbine plane is of importance in the placement of instnlments to measure 

the true free stream wind velocity. 

Calculation of this velocity may be accomplished by applying. the 

Biot-Savart law to a vortex filament shed from the blade as it moves rear-

ward in a helical manner (Figure 2.10.1). 

-----, ..... y 

Figure 2.10.1 Rotor Wake Model 

The axial velocity induced by a single helical vortex is shown in Figure 2.10.2. 

2.0 
t=97% t =93% 

~----- -s:::- O - --> >- t = 

0 -0 
a:: 
>- 1.0 -u 

..Q 
(!) 

> 
-0 
(!) 
U 
:::l 
-0 
c: 

0 
-4 -2 o 

." = y/R 
V -DCn) 

co 1 n 
+ r;:;; Figure 2.10.2 Induced Axial Velocity Variation v -DCO) 

00 



51 

REFERENCES 

1. Rankine, W. J. H., Transactions, Institute of Naval Architects, Vol. 6, 
p. 13, 1865. 

2. Froude, R. E., Transactions, Institute of Naval Architects, Vol. 30, 
p. 390, 1889. 

3. Betz, A., Zeitshur.f. F1ugtechnik u. Hotor1. 11, 105, 1920. 

4. Froude, W., Transactions, Institute of Naval Architects, Vol. 19, 
p. 47, 1878. 

5. Drzewiecki, S., Bulletin de1'Association Technique Haritime, 1892. 

6. Lanchester, F. W., Aerodynamics, London, 1907. 

7. Flamm, Die Schiffschraube, Berlin, 1909. 

8. Joukowski, N. E., Soc. Math. Moscow, 1912, reprinted in "Theorie Tour
billonnaire de l'helice Propulsive," Paris, 1929. 

9. Betz, A., Gottinger Nachr., p. 193, 1919. 

10. Prandt1, L., Gottinger Nachr., p. 193 Appendix, 1919. 

11. Goldstein, S., "On the Vortex Theory of Screw Propellers," Proc. Royal 
Soc. A123, 440, 1929. 

12. G1auert, H., "An Aerodynamic Theory of the Airscrew," Reports and 
Memoranda, AE. 43, No. 786, January 1922. 

13. G1auert, H., Br. A.R.C.R. and H. 869, 1922. 

14. G1auert, H., Durand, W. F., (Ed.), "Airplane Propellers," Vol. IV, 
Division I, Chapter VII, Section 4, pp. 169-360, Julius Springer, 
Berlin, 1935. 

15. Pisto1esti, E., Vortrage aus dem Gebiete der Hydro-und Aerodynamik, 
Innsbruck, 1922. 

16. Kawada, S., Tokyo Imperial University, Aero. Res. lnst., No. 14, 1926. 

17. Barieau, R. E., Private Communication. 

18. Wilson, Robert E. and Lissaman, Peter B. S., "Applied Aerodynamics of 
Wind Power Machines," Oregon State University, May 1974. 

19. McCormick, B. W., Aerodynamics of V/Stol Flight, pp. 73-100, Academic 
Press, 1967. 



52 

20. Schmitz, F. W., "Aerodynamics of the Model Airplane, Part 1, Airfoil 
Measurements," N 70-39001, NTIS, November 1967. 

21. Glauert, H., "The Analysis of Experimental Results in the Windmill 
Brake and Vortex Ring States of an Airscrew," Reports and Memoranda, 
No. 1026 AE. 222, February 1926. 



53 

CHAPTER III 

OPTIMUM-PERFORMANCE, OF HORIZONTAL AXIS WIND TURBINES 

INTRODUCTION 

It is desirable to know the maximum efficiency that can be obtained from 

a wind turbine as well as the configuration required to obtain such perform-

ance. The principal use of such knowledge is expected to be in the evalua-

tion of design tradeoffs rather than in the construction of performance-

optimized wind turbines. While propeller theory has provided the basis for 

design analysis of wind turbines, the criteria for optimum propeller perform-

ance leads to a different result than for optimum wind turbine performance . 

• y 

Figure 3.0.1 Helical wake model. 

1 
The optimum propeller was originally investigated by Betz who proved 

that for maximum blade tractive power the far-wake must move rearward as a 

rigid helical surface as shown in Figure 3.0.1. The Betz condition for a 

lightly loaded rotor results in the requirement that the wake displacement 

velocity, v~, illustrated in Figure 3.0.2, be constant along the blade. 
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Figure 3.0.2 Wake flow velocity diagram for a propeller. 

Goldstein
2 

used the Betz rigid wake criteria to determine the exact dis

tribution of circulation for a lightly-loaded propeller. Theodorsen3,4,S,6,7 

extended the Betz criteria to include heavy loading since the far wake has 

the same appearance regardless of the loading. By redefining Goldstein's solu-

tion for heavy loading and including wake contraction, Theodorsen developed a 

theory, for a specified power coefficient, that could be used to determine the 

wake displacement velocity; thereby, the optimum design configuration and 

optimum performance could be calculated. Crigler8 presented Theodorsen's 

9 10 theory for the practical design of propellers, and later Lerbs' presented 

a refined approach, similar to Theodorsen's, for the design of marine propellers. 

To define an optimum wind turbine, the relation between induced power and 

shaft power must be made stationary; while for the propeller, it is the expres-
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sion relating maximum tractive power and shaft power which is to be held 

stationary. For a wind turbine, the efficiency depends on the ability of 

the wind to do useful work, UT, on the turbine and to convert that work into 

shaft power, nQ. Here n is the angular velocity of the turbine, Q the tor-

que, T the axial force exerted by the wind, and U the axial velocity through 

the turbine. Just as is the case for the propeller, an increase in circula-

tion for a wind turbine will result in an increase in torque ~Q and axial 

force ~T. This may be expressed as the ratio of power output increase to 

useful work increase A, 

The procedure used for the propeller to establish that the efficiency is 

maximum does not yield the same result for the wind turbine because a change 

in circulation would not only change the axial force, T, and torque, Q, but 

also the axial velocity, U. However, it can be established that the induced 

tangential velocity for a wind turbine must be a minimum along the blade to 

obtain maximum performance. The flow field in the plane of the rotor is shown 

in Figure 3.0.3. The expressions for the axial force and torque increments 

due to an increment of circulation ~r are expressible as 

w 
~T ~ P~r(n+2)rdr 

~Q ~ p~r(V-v)rdr 

or ~Q ~ p~rUrdr 

Therefore, 
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or 

where a' 

A = 

w 
- 2~ 

1 1 
= 

For a wind turbine we want A to be large; therefore, the induced angular 

velocity must be a minimum along the blade. This condition leads to a variable 

wake displacement velocity as can be seen from Figure 3.0.3. 

A 

wr 
T 

f, 
'fI 

u 

Figure 3.0.3 Rotor flow velocity diagram for a wind turbine. 

v 

Near the blade tips, at high tip speed ratios, the optimum wind turbine 

experiences a nearly constant wake displacement velocity; however, as the axis 

is approached, the displacement velocity increases. Therefore, it is apparent 
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that the wake vortex sheet will change shape with distance from the rotor, as 

shown in Figure 3.0.4. For this reason, the approaches of Goldstein, Theodorsen, 

and Lerbs cannot be used for wind turbines except for high tip-speed-ratio 

design, where errors in design specification at inner blade stations are not 

critical to performance. 

Figure 3.0.4 Vortex system of a wind turbine. The root displacement velocity 
is different than at tip. 

Rohrbach and Worobel ll have investigated the effect of blade number and 

section lift-to-drag ratio on the maximum performance that can be obtained 

from wind turbines. Figure 3.0.5 shows the effect of the section lift-to-

drag ratio on peak performance of an optimum two-bladed wind turbine as 

obtained by Rohrbach and Worobel. Figure 3.0.6 shows the effect of blade number 
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Figure 3.0.6 Effect of number of blades on leak performance of optimum wind 
turbines (Rohrbach and Worobel 1). 



59 

on peak performance. The calculations of Rohrbach and Worobel have been 

found to yield siightly lower maximum performance than found in thts study, 

the difference being attributed16 to the fact that they used a finite hub radius. 

12 Glauert defined the configuration and performance of an optimum actu-

ator disk by developing a closed-form solution to a variation problem using 

strip theory equations. Glauert's solution, however, neglected drag and tip-

loss. This paper presents an approach using modified strip theory that 

incorporates tip-loss, determines the lift/drag effect on optimum performance, 

and examines the performance of optimum wind turbines at off-design conditions. 

3.1 LOCAL OPTIMIZATION 

Optimum performance may be determined by maximizing the power output at 

each station along the blade neglecting drag. The power developed at a dif-

ferential element, dr, located at radial position, r, is 

Defining local and overall tip-speed-ratios and solidity, 

r~ 
x = V' X = R~ and cr = Bc 

V' L 'lTr 
00 00 

the local contribution to the power coefficient is given by 

where 

Power 
C 

P - 1 v3 R2 
zp 00'IT 

(3.1.1) 

(3.1.2) 
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de 
The differential contribution ~ is maximized by varying the axial velodx 

city, U, or its dimensionless equivalent, (I-a), until the power contribution 

becomes stationary. The equations for linear and angular momentum in the 

annular element must also be satisfied. From reference (13), the equation 

relating blade torque to the fluid angular momentum is 

= 8cos¢ l+a' (3.1.3) 

The corresponding equation relating the blade force to the fluid linear momen-

tum is 

= (l-aF)aF 
2 (I-a) 

(3.1.4) 

Equation (3.1.4) contains a second order contribution from the tip-loss-factor. 

While experimental results for wind turbines are not sufficiently accurate to 

ascertain the validity of including the second-order term, the effect of retain-

ing this term in the equations has resulted in significantly reduced numerical 

14 computation times in design optimization studies performed by Walker 

With the aid of the flow geometry at the blade illustrated in Figure 3.1.1, 

and Equation (3.1.3), the Equation (3.1.2) becomes 

de 3 
~ = 8a' (l-a)F x 
dx X2 

(3.1.5) 

Equations (3.1.3) and (3.1.4) may be combined to give 

a(l-aF) 2 = aix (l+a') (3.1.6) 
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Figure 3.1.1 Blade flow velocity diagram. 

The last two equations have been obtained using the assumption that only 

lift forces contribute to the induced velocities. It may be observed that if 

the tip-loss factor, F, is equal to unity, the above equations reduce to those 

of Glauert. 

At each radial station, the power contribution is obtained by varying the 

axial interference factor, a, until Equation (3.1.5) is maximized. In the pro-

cess of maximizing Equation (3.1.5), Equation (3.1.6) must also be satisfied. 

Additionally, F is a function of a, a', x and X. Therefore, for each trial 

value of a, iteration is required to obtain consistent values of a' and F. 

As a result of optimizing the performance at each station, the flow angle, 

¢, and the product of ce L are determined as a function of blade radius. The 

overall power coefficient is obtained by integrating the power coefficient con-

tributions along the blade. The effect of drag can be determined parametrically 

by conducting multiple integrations for a range of blade section LID ratios. 
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The blade twist is not determined by this process because the angle of 

attack depends upon CL and only the product, cCL' is available. It is neces

sary to specify either the chord distribution or the lift distribution to 

obtain the twist distribution. 

3.2 OPTIMUM ROTOR CONFIGURATION AND PERFORMANCE 

The parameters that determine the design point of a performance-optimized 

rotor are: blade number, tip speed ratio and the section LID ratio. The 

effect of the LID ratio on the induced velocities is small, well within the 

accuracy of experimental measurement. Hence, the rotor configuration was 

determined using the assumption of zero drag and the LID ratio was then used 

to determine the effect of drag on rotor performance. The effect of each of 

the design parameters on optimum performance is: 

1. Blade Number - the greater the blade number, the better the perform-

ance. 

2. Tip Speed Ratio - higher tip speed ratios yield lower induced angular 

velocities; however, the drag effects also increase with increasing 

tip speeds. As a consequence, the power output at large tip-speed

ratios depends on the blade LID ratio. 

3. Lift-to-Drag Ratio - the higher the LID ratio, the higher the perform

ance independent of blade number or tip speed ratio. 

In considering a wind turbine design, the question arises as to how many 

blades should be used. In general, as the number of blades increases so does 

the cost. The advantages of increasing the number of blades are improved per

formance and lower torque variations due to wind shear. Furthermore, power 

output increases, but with diminishing returns. 
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Figure 3.2.1 Blade chord-lift distributions for optimum performance three
bladed wind turbines. 

The blade configuration for optimum performance requires that the blade 

width or chord and the blade twist angle vary continuously and in such a manner 

as to produce maximum power at a given tip speed ratio. As an example of a 

performance-optimized wind turbine, the blade chord and angle distributions 
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change aTe shown in Figure 3.2.1 and 3.2.2 for three-bladed machines. Note 

that as tip speed ratio increases, blade solidity and blade angle decrease. 
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'IR 

Figure 3.2.2 Angle of relative wind for optimum performance three-bladed 
wind turbines. 
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Table 3.2.1 presents the blade configuration for three-bladed optimum 

rotors at various tip speed ratios. 

Table 3.2.1 Blade Geometry for Three-Bladed Wind Turbines 

X=6.0 X=8.0 X=10.0 
Cp =0.535 Cp =0.548 Cp =0.555 

max . max max 

r/R cC" L 
cC . 

L ~ 
cC

L 
R R R 

1. 00 0.0000 5.000 0.0000 4.000 0.0000 3.200 
0.95 0.0498 5.736 0.0290 4.468 0.0189 3.668 
0.90 0.0550 6.524 0.0316 5.036 0.0204 4.099 
0.85 0.0589 7.129 0.0337 5.464 0.0217 4.422 
0.80 0.0627 7.690 0.0358 5.866 0.0230 4.730 
0.75 0.0667 8.261 0.0381 6.282 0.0245 5.055 
0.70 0.071'1 " 8.875 0.0407 6.737 0.0262 5.417 
0.65 0.0761 9.556 0.0436 7.251 0.0282 5.830 
0.60 0.0818 10.331 0.0471 7.843 0.0304 6.308 
0.55 0.0884 11. 229 0.0510 8.535 0.0331 6.870 
0.50 0.0960 12.284 0.0557 9.357 0.0362 7.540 
0.45 0.1049 13.546 0.0613 10.349 0.0400 8.353 
0.40 0.1154 15.078 0.0681 11. 569 0.0446 9.357 
0.35 0.1278" 16.975 0.0763 13.103 0.0503 10.630 
0.30 0.1423 19.369 0.0865 15.080 0.0576 12.290 
0.25 0.1589 22.460 0.0993 17.710 0.0670 14.534 
0.20 0.1765 26.535 0.1148 21. 337 0.0794 17.710 
0.15 0.1911 32.001 0.1324 26.537 0.0953 22.460 
0.10 0.1900 39.355 0.1452 34.207 0.1123 29.995 
0.05 0.1446 48.590 0.1263 45.172 0.1091 42.254 

In order to specify blade configuration, it is not sufficient to examine 

the turbine performance at only the design condition; off-design operation must 

also be considered. Figure 3.2~3 illustrates the off-design-tip-speed-ratio 

performance of two rotors. Figures 3.2.4 and 3.2.5 illustrate the off-design 

blade pitch effects on performance. As can be seen, small changes in pitch 

angles have pronounced effects on off-design performance and delay entrance 

into the windmill-brake flow state. One may also observe from Figure 3.2.4 
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Figure 3.2.3 Off-design tip speed ratio performance of optimum performance 
three-bladed wind turbines, designed to operate at tip speed 
ratios of six and ten. (LID == 55, C

L 
== 0.9 at all stations, 

NACA 23018 airfoil series.) 

that for a design tip speed ratio of ten, pitching the blade in either direction 

from the design blade setting, 0°, produces a smaller power coefficient, signi-

fying an optimum condition as expected. However, we observe that at a slightly 

lower tip speed ratio than the design tip-speed ratio (X == 10.0), performance 

is higher. This may be explained by Figure 3.2.6 which shows that for LID 

ranges of 50-75, the power coefficient increases slightly as the tip speed ratio 

decreases from ten. 
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Table 3.2.2 gives a comparison of different methods of computing the max-

imum performance of a two-bladed rotor at a tip speed ratio of 10. The power 

coefficients are given for various blade LID ratios. 

Table 3.2.2 Comparison of Various Methods of Maximum 
Performance Prediction for a 2-Bladed Rotor 
at a Tip Speed Ratio of Ten 

Method L 
Cp Cp Cp Cp Cp 

_ = 00 100 75 50 25 
D 

Local Opt. .585 .526 .506 .467 .349 
F=l 

Local Opt. .547 .491 .473 .436 .324 
Prandtl 

Local Opt. .540 .485 .467 .431 .321 
Goldstein 

Rohrbach & .51 .46 .44 .41 
Worobel 

Constant .521 .462 .442 .402 .284 
Axial Velocity 

The first row gives the performance using Glauert's actuator disk model. 

G1auert's results correspond to the limiting case of infinite blade number. 

The second and third rows give the results using local optimization with the 

Prandt1 and Goldstein tip loss models. As can be seen from the values of the 

power coefficient, the power determined using the Prandt1 model is about 1% 

higher than that obtained using the Goldstein model. While the difference in 

predicted performance is only 1% the difference in calculation time is more 

than an order of magnitude; therefore, the Prandtl tip-loss model has been 

used in generating the results given in this paper. 

The fourth row gives the results of Rohrbach and Worobel. Their 

results are seen to yield optimum performance about 5% lower than per-

dieted using local optimization. The difference is due to a finite hub 

radius. The last row gives the results when the power was optimized at 
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the 3/4 R blade position and the axial velocity, U, obtained at that blade 

position was maintained over the rest of the blade. It may be noted that this 

approach yields substantially the same results as Rohrbach and Worobel. 

The design procedure for determining the optimum blade configurations 

can be illustrated with several examples. 

Example Case 1. Obtain the blade configuration of a two-bladed wind turbine 

for operation at a tip speed ratio of ten and compare its predicted off-design 

performance with that determined for the NASA-ERDA MOD-O turbine. 

Procedure 

First determine the optimum blade parameters, cCL/R and ¢. This is accomp

lished by using the local optimization analysis described in section 3.2. From 

this analysis, the angle ¢ and the chord-lift coefficient/maximum radius ratio 

as a function of local radius are obtained. The variation of these parameters 

with radius is shown in Figures 3.2.7 and 3.2.8. The next step is to select an 

airfoil section. For this example, we will choose NACA p~ofile 23018, the air-
. i :~I 

foil section used on the NASA-ERDA MOD-O. The L/D maximum for this airfoil 

occurs near CL = 0.9, at an angle of attack equal to So. It may be noted that 

the L/D ratio varies only slightly in the CL range from 0.6 to 1.0. From the 

infinite number of possible variations in the cCL product, we select two repre-

sentative cases: 

Design I. CL = 0.9 and a = 8° constant along the blade. 

Design II. CL varies from 0.6 at the tip to 1.0 at the hub. 

Design I 

To determine the chord distribution for Design I, the cC
L 

product obtained 

from the optimization process is divided by the lift coefficient. In order to 

compare the optimized design with the NASA-ERDA MOD-O, the chord is given for 
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Figure 3.2.7 Optimum performance blade chord-lift distribution for a two
bladed wind turbine of a tip speed ratio of ten. 
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Figure 3.2.8 Optimum performance angle of relative wind for a two-bladed 
wind turbine at a tip speed ratio of ten. 
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R max := 19.05 meters. 

To determine the blade twist angle for Design I, we subtract the angle of 

attack, 8°, from the angle of relative wind, ¢, at each station. 

e . = ¢ - a tWlst 

Design I is now specified as shown in Table 3.2.3. 

Table 3.2.3 Blade Geometry for Design I 
(CL = 0.9, a = 8°, 2 Blades, R

T1P 
:= 19.05 m) 

Chord e . 
Station tWlst 

(meters) (degrees) 

100 0 -5.000 
95 0.5919 -4.494 
90 0.6422 -4.023 
85 0.6867 -3.661 
80 0.7312 -3.325 
75 0.7794 -2.978 
70 0.8330 -2.613 
65 0.8952 -2.182 
60 0.9665 -1. 699 
55 1.0506 -1.134 
50 1.1500 -0.462 
45 1. 2698 +0.351 
40 1. 4161 1. 357 
35 1.5978 2.630 
30 1.8288 4.290 
25 2.1281 6.534 
20 2.5210 9.710 
15 3.0264 14.460 
10 3.5643 21.995 

5 3.4653 34.255 

Design II 

Design II is determined in the same way as Design I, except C
L 

and a vary 

at each station according to the following relations: 

C
L 

) r/R 
Tip 



which can be rewritten 

C
L 

= 1. - 0.4 r/R 

a = 9.64° - 4.38 (r/R)O 

Design II is now specified as shown in Table 3.2.4. 

Table 3.2.4 

Station 

100 
95 
90 
85 
80 
75 
70 
65 
60 
55 
50 
45 
40 
35 
30 
25 
20 
15 
10 

5 

Blade Geometry for Design II 
CL = 1. - 0.4 (r/R), 

a = 9.64° - 4.38(r/R)0, 2 Blades, L -Tip 

Chord 
(meters) 

o 
.8470 
.9031 
.9367 
.9677 

1. 0019 
1.0415 
1. 0887 
1.1445 
1.2122 
1.2939 
1.3935 
1. 5170 
1.6721 
1. 8703 
2.1281 
2.4661 
2.8974 
3.3418 
3.1824 

= 19.05 m 

e . 
tW1St 

(degrees) 

-2.259 
-1.972 
-1.721 
-1.578 
-1. 461 
-1.333 
-1.178 
-0.976 
-0.712 
-0.366 

0.087 
0.680 
1.467 
2.520 
3.902 
5.987 
8.943 

13.474 
20.790 
32.831 

75 

Designs I and II are compared to the blade geometry of the NASA-ERDA 

MOD-O wind turbine in Figures 3.2.9 and 3.2.10. Figure 3.2.9 shows that the 

optimum designs have a greater blade twist nearer the hub than the MOD-O con-

figuration. Figure 3.2.10 shows that the MOD-O design is a good approximation 
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to optimum chord distribution fOT Design I, except near the hub. 

The performance of Designs I and II may be determined by the standard 

strip theory analysis used in references (13, 14). The power coefficients 

for off-design tip speed ratios of Designs I and II and the NASA-ERDA MOD-O 

are presented in Figure 3.2.11. The NASA-ERDA MOD-O b1~de design is a good 

approximation to the Design I optimum outer blade geometry. It is not sur-

prising to find that the MOD-O turbine has a power coefficient only five per-

cent below optimum Design I at the design tip speed ratio, because outer blade 

geometry has the greatest influence on performance. 
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Figure 3.2.9 Blade setting angle as a function of radius for Designs I and II 
compared to NASA's MOD-O. 
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Example Case 2. Determine an optimum blade configuration for a Chalk-type* 

wind turbine at an operating tip speed ratio of 1.75. The design should have 

the same design parameters as the Chalk wind turbine described in Table 3.2.5 

except for the chord and blade twist distribution. 

Table 3.2.5 Chalk Wind Turbine Specifications 

Outside diameter 
Inside diameter 
Length of blades 
Number of blades 
Chord of blades 
Blade pitch 

Blade twist 
Support wires 
Number of wires 
Length of hub in axial 

direction 
Airfoil 
Cp 

max 

Procedure 

4.6482 meters 
1.6002 meters 
1.5240 meters 
48 
0.0883 meters 
9° outside rim 

18° inside rim 
9 Q 

0.00157 meters 

{

ref erenced} 
to rotor 
plane 

not covered by blades 96 
::;: .6096 meters 

Clark Y 
0.3 

To generate an optimum design, again we use the procedure of section 3.2 

to obtain the blade design parameter variations for a 48 blade wind turbine at 

a tip speed ratio of 1.75 as shown in Figures 3.2.12 and 3.2.13. The sectional 

aerodynamics were obtained from Schmitz15 . At a Reynolds number of 105,000, 

it can be determined that the most suitable LID range is between 12.5 and 13.5. 

Choosing a chord dimension such that the lift coefficient calculated at each 

blade station (using Figure 3.2.13), is in the suitable LID range and does not 

exceed the maximum lift coefficient, we can determine the angle of attack. 

* Invented by Thomas Chalk. 
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8 It 48 
X II 1.75 

THEORETICAL OPTIMUM BLADE 

DESIGN 

PRANDTl TIP Loss MODEL 

oe~ ____ ~ ____ ~ ____ ~ ______ p-____ ~== __ ~ ____ ~ ______ ~ ____ ~ ____ -+ __ ~ 

o 0-1 0.2 0.3 0.4 0.5 
r 
R 

0.6 0.7 0.8 0.9 1.0 

Figure 3.2.12 Optimum angle of relative wind for Chalk-type wind turbines at 
a tip speed ratio of l. 75. 

Using Figure 3.2.12 to determine the angle of the relative wind at each station 

and subtracting the angle of attack at each station, the blaqe twist angle dis-

tribution may be determined as listed in Table 3.2.6 and shown in Figure 3.2.14. 

Comparing the optimum design parameters, Table 3.2.6, to the Chalk wind 

turbine, Table 3.2.5, we observe that the blade chord and blade twist are in-

creased substantially from the original design. Figure 3.2.15 illustrates the 

effect of the lift/drag ratio on an optimum Chalk wind turbine and on an optimum 

high speed wind turbine. 
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Figure 3.2.13 Optimum blade chord-lift distribution for a Chalk-type wind 
turbine at a tip speed ratio of 1.75. 

8 -48 
C - 0.0698 R 
X - 1.75 
Re- 105,000 

THEORETICAL OPTIMUM .BLADE 
DESIGN .. 

o·~----~--~~--~~--~----~----~-----+-----+-----+-----+----o 0.1 0.2 0.3 0.4 0.5 
r -R 

0.6 0.7 0.8 0.9 

Figure 3.2.14 Optimum blade design for a Chalk-type wind turbine 
(BCL - blade angle measured from chord line). 

1.0 
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Table 3.2.6 Optimum Geometry for Chalk Wind Turbine 

r/R x 100% c/R a O eO 
lift line 

eO 
C

L 
zero chord 

100 .0698 0.430 0 19.5 
90 .0698 0.473 0.7 20.6 
80 .0698 0.509 1.3 22.2 
70 .0698 0.540 1.8 24.3 
60 .0698 0.568 2.2 26.8 
50 .0698 0.589 2.6 30.0 
40 .0698 0.595 2.7 33.9 
30 .0698 0.573 2.3 37.8 
20 .0698 0.494 1.1 45.0 
10 .0698 0.302 -2.0 55.4 

L/D range, 12.5 -+ 13.5 Tip blade angle, 26.2° 
Maximum radius, 2.3241 m Hub blade angle, 42.5° 
Hub radius, 0.8001 m Blade twist, ~ 16° 
Chord, 

0.6 

0.5 

0.4 

Cp 
0.3 

0.1 

o 

0.1621 m 

o 

POWER COEFFICIENT AS AFFECTED BY 
THE LIFT/DRAG RATIO 

OPTIMUM CHALK WIND TURBINE 

25 

OPTIMUM WIND TURBINE 
X.'O.O, 8=29 Cp =O.S47 at L"o~@:II 

100 

26.2 
27.3 
28.9 
31. 0 
33.5 
36. 7 
40.6 
44.5 
51. 7 
62.1 

line 

Figure 3.2.15 Power coefficient as affected by the lift/drag ratio for the 
optimum Chalk wind turbine and an optimum two-bladed wind turbine. 
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3.4 CLOSURE 

Performance optimization of wind turbines does not share the rigorous 

foundation that exists for the determination of optimum performance propellers. 

A strip theory approach using local optimization results in higher calculated 

performance than either constant axial velocity or constant wake displacement 

velocity methods that have been applied to wind turbines. 

Optimized wind turbines perform best at high lift/drag ratios as is to be 

expected. Structural and cost considerations, as well as off-design operating 

conditions may dictate some departure from the performance optimized configura-

tion. Knowledge of the optimized configuration will enable design changes to 

be directed as to minimize performance loss. 

Figures 3.4.1, 3.4.2, 3.4.3, and 3.4.4 summarize the maximum perform-

ance that can be obtained from horizontal axis wind turbines. 

Figure 3.4.1 

GLAUERT IDEAL 

,,- i' Blade 

// 
1/ '" ,I / 
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0.3 zit 

11 
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0.2 U LID = CD 

I 

0.1 I 

0 
0 4 8 12 16 20 

X 

Effect of Number of Blades on Peak Performance of Optimum Wind 
Turbines 
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Figure 3.4.2 Effect of LID on Peak Performance of Optimum One-Bladed Wind 
Turbines 
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Figure 3.4.3 Effect of LID on Peak Performance of Optimum Two-Bladed Wind 
Turbines 
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Figure 3.4.4 Effect of LID on Peak Performance of Optimum Three-Bladed Wind 
Turbines 
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CHAPTER IV 

AERODYNAMICS OF THE DARRIEUS ROTOR 

INTRODUCTION 

Interest in the wind as an alternative energy source has resulted in 

a number of investigations of unconventional wind-powered machines. South 

and Rangi l have developed a vertical axis turbine of a type earlier proposed 

b D 
. 2 

Y arrleus . This device is illustrated in Figure 4.0.1. The performance 

of Darrieus-type rotors has been experimentally determined by wind tunnel 

tests. 

Performance models of the Darrieus Rotor have been formulated by Wilson 

d L' 3 T ,4 J 5 M 6 Sh k 7 S 'kl d8 d 9 an Issaman, emplln, ames, uraca, an ar, trlc an an Holme 

The flow models published by Wilson and Lissaman, Shankar and Strickland are 
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identical and have been found to yield the best correlation with experimental 

results, however Holme's analysis is considered to be the most rigorous to 

date in that the effects of both bound and wake vorticity are included. 

Since Holme's analysis is restricted to linear aerodynamics and 2-D rotors 

no test data comparisons are possible. The current method of performance 

analysis for 3-D machines 3,7,8 is in essence a strip theory in which the time-

averaged force on a blade element is equated to the mean momentum flux through 

a streamtube of fixed location and dimensions. The analysis uses quasi-steady 

aerodynamics neglecting the effects of mutual interference and of more signifi-

cance, neglects the effects of the rear blades in crossing the vortex sheets 

of the forward blades (front and rear blade loads are the same), While the 

analysis correlates well with the available test data, it may be noted that 

the test data obtained to date has centered on time-averaged quantities such 

as power and the force in the free stream direction. 
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4.1 LINEAR THEORY 

To analyze a Darrieus-type crosswind-axis device we adopt the standard 

approach of wing theory, which is to express the forces on the system by a 

momentum analysis of the wake as well as by an airfoil theory at the lifting 

surface itself. The expression for these forces contains unknown induced 

flows. By equating the wake and blade forces one obtains sufficient equations 

to determine the induced flows. 

For the device considered we assume that each spanwise station parallel 

to the axis behaves independently in the sense that the forces on the device 

at each station may be equated to the wake forces. In general, these devices 

can experience a windwise as well as a cross-wind force, so that the wake can 

be deflected to the side. 

Consistent with vortex theory of airfoils, we will assume the induced 

flows at the device are one half their value in the wake. Thus, we obtain that 

if the wake windwise perturbation is !J.V ",-2aV
oo

' then at the device itself the 

incoming flow has velocity V (I-a), giving the flow system illustrated in 
00 

Figure 4.0.1. 

In order to simplify the analysis we shall first adopt the following 

assumptions, 

1. S l: 0 

2. CD :::: 0 

3. CL 
:::: 21T sinex. 

4. c « R 

5. Straight blades (y=o) 

Our results will then be limited to an inviscid analysis at high tip 

speed ratios where the maximum angle of attack ex. is small. The low tip 
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speed ratio performance requires numerical analysis to model the nonlinear 

aerodynamics near stall. Using the above assumptions and starting with the 

Kutta-Joukowski law, we can write 

dL 
dz - pwr 2 

= 1/2pW cCL 

so that 

c r = 2 WC L = ~cW sin a 

Since the force on the airfoil can be expressed as 

we obtain 

-+ 
dF [ V V . 2 ': dz - P')]"c - a t Sln e] (V sin e + V V sin e cos e)i] 

a a t 
(4.1.1) 

Now we can equate the force on the airfoil to the change in momentum in the 

streamtube which the airfoil occupies. Let the streamtube be of width dx 

when the airfoil goes from angular position e to positione + de. The width 

dx is related to de by 

dx = Rde I sin e I 

The process will repeat itself every revolution so the time interval of 

our analysis shall be one period which is 2~/rl. Of this time period, the airfoil 

will spend a time increment of de/rl in the front portion of the streamtube and 

another time increment of de/rl in the rear portion of the wake. Since the 

streamwise force contribution from equation (4.1.1) is seen to be symmetrical 

with respect to the angles ±e we may write the blade force equation for the time 

period 2,,/[2 as 



( ~. dF) 2 de J • - - -2p'rrcVt Va sin e Q 
dz blade 

Now the momentum equation yields the force in the streamtube as 

(; . ~!) = pRde I sin e I 
momentum 

2'Tf (l-a)V 2V a r;-eo eo ~~ 

Equating these two forces under the assumption that V = V (I-a) and a eo 
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V
t 

= RQ yields an expression for the axial induction factor a for one blade 

c RQ/. / 
a = 2R V Sln e 

eo 

or for B blades 

Bc RQI· I 
a = 2R V Sln e 

eo 

Now that a is defined, the blade force may be resolved into tangential 

and radial components. The torque is given by 

The average torque for a rotor with B blades is 

- 2 4 BcX Q = Ip7fBcRVeo] [1/2 - 3TI~ 
3 

+ -32 
BcX 
~ 

2 
] 

and the corresponding sectional power coefficient is given by 

c 
p 

= ___ P_o_w_e_r ____ = 'TfX Bc [1/2 _ ~ BcX + 3 
2 R 3'Tf R 32 1/2 pVeo(Swept Area) 

where X = ~Q is the tip speed ratio. 
co 
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This expression yields a maximum power coefficient of 0.554 when the 

quantity BcX/2R = a = 0.401. Further refinements can be made with con-max 

sideration of drag and stall. 

Figure 4.1.1 i11ustrates the dimensionless mass flow, streamwise 

force and power for the case of a cylindrical rotor using the analysis of 

Templin4, Wilson and Lissaman3 and Ho1me 9 . The coefficients are defined for 

a unit depth of rotor. 

c. = 
m 

CT = 

Cp = 

Mass Flux 
pV 2R'1 

OJ 

Streamwise Force 
2 1/27fV 2R·1 
co 

Power 
3 1/2pV 2R·1 
00 

Templin's analysis uses a unifo=~ induced velocity while the analysis of Holme 

considered induced velocities that varied in both the x and y directions. 

From the figure it may be seen that a11 three theories approach the 

same limits for zero loading. For large loadings however the so-called 

multiple streamtube method3,7,8 yields better agreement with the results of 

Holme. Neither our analysis nor that of Templin's predicts unsymmetrical 

loading conditions as does the analysis of Holme. Holme's results show that 

the blade encounters higher angles of attack at the front stations than at 

the rearward positions. 

Figure 4.1.2 shows the position of the shed vorticity for both the Templin 

model and our flow model. Since the flow through the rotor is uniform in 

Templin's model the vorticity sheet does not deform in the streamwise direc-

tion. In the case of non-uniform induced velocities it may be seen that the 

shed vortex sheet deforms continuously in the streamwise direction. 
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Flow 
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Figure 4.1. 2 Position of Shed Vorticity 

OUR MODEL 

TEMPLIN I S MODEL 

At the high rotational speeds required for the Darrieus-type rotor, the 

inertial loads are large and result in substantial bending loads in the blades. 

These bending loads may be removed by deploying the blade in a shape similar to 

the catenary so that the loads are entirely tensile. The required shape has been 

investigated by Blackwell
lO 

and given the name troposkien. The curve is des-

cribed by elliptic integrals and is approximated by a sine curve or parabola. 

The effect on performance caused by bringing the blades closer to the axis of 

rotation is substantial since both the local rotational speed and the usable 

component of the lift are reduced. 
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The analysis of a curved rotor proceeds in the same manner as above. If 

we analyze a unit height of the rotor, the expression for a becomes 

a = Bc X cos ylsin el R m 

where y is the local angle between the blade tangent and the axis of rotation. 

The average torque generated by a slice dz along the axis of rotation is 

dQ _ p~BcV2 cos y [1/2 _ 8 X + 3 2X2 2 yJ dz - 00 3~ a cos y 8 a cos 

and the incremental power coefficient is 

(4.1.2) 

Bc where a = 2R is a solidity defined as the ratio of blade circumference to 
m 

disc diameter. 

The integration of equation (4.1.2) for an arbitrary geometry may be 

accomplished; one simple case is the circular blade for which a maximum power 

coefficient of 0.536 occurs at aX = a = 0.461. max 
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4.2 NON-LINEAR THEORY 

In the previous section, the aerodynamics of the Darrieus Rotor was 

examined for the case in which CL = 2nsina. This lift curve selection 

results in a linear relation between the circulation r and the component of 

the relative wind that is perpendicular to the blade. Since airfoils do 

not exhibit lift coefficients that are expressible in single closed form 

analytical expressions, a numerical approach must be used. 

Figure 4.2.1 below shows a curved Darrieus Rotor blade and the unit 

-+ 
vectors to be used in describing the flow. It is to be noted that e B is a 

unit vector which is parallel to the blade. 

z 

x 

6 ~ e "'. e tlR = I COS + J sin 

A Ii. e Jl. e 68 = - I sin t J cos 

@J. = -~RCOS)' - ~ sin y 

A /I, ~. 
68 = kcos Y - tlR Stny 

Figure 4.2.1 Unit Vectors Used in Describing the Flow for a Curved Darrieus 
Rotor Blade 



The velocity of the air relative to the blade is 

w = f V
t
sin6-J(V + V cose) 

a t 

Transforming the relative velocity to components in blade coordinates, we 

obtain for the effective relative velocity 

here the spanwise component of the flow has been omitted. Since the lift 

developed by the blade is in the We x ~B direction, it can be shown that 

where SL is a unit vector in the direction of the lift. 

A section of blade of length ds in ,the eB direction develops a lift 

force dL where 

the streamwise component of this force is 
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As dz = ds cosy, equating the momentum change in a streamtube of 

dimensions Rd61sineldz to the streamwise force generated by a rotor with B 

blades, we obtain 

pRd61sineidz V ~V2TI a Q 

The left-hand side of the above equation represents the blade-generated stream-

wise force while the right-hand side of the above equation is the momentum flux 

in the streamtube. 



9.8 

Simplification of this equation results in 

Bc Rrl CL We _ 
If V 7T V - 4a(1-a) 

<Xl 00 

or using the nomenclature of Chapter 2. 

(C
T 

) 
L Blade 

The angle of attack a is given by 

tan a = W.l.,_ 
- We -

-+ 
W·<3 

- J. ----+ 
Woe e 

= (C
T 

) 
L Momentum 

V sine cosy a 
Vacose+Vt 

(4.2.1) 

(4.2.2) 

It is to be noted that consistent with strip theory for horizontal axis rotors, 

the drag force has not been included in the determination of the induced 

velocities. It may be also remarked that inclusion of drag forces results in 

a singularity at the e = 0 and at e = 'IT stations for Oarrieus Rotors since the 

streamtube width (dx = Rlsinelde) at these points goes to zero while the stream-

wise force does not reach zero when drag is included. 

The induced velocity is determined by iteration using equations (4.2.1), 

(4.2.2), and aerodynamic data for the airfoil in the form CL = CL(a). 

Once the induced velocity has been evaluated, the torque contributions from 

lift and drag may be determined. The lift contribution to the torque is 

R2 W 
= ~ pv2 Bc ~ CL(l-a)sine-

R
R dz 

2 00 R V m <Xl m 

while the drag contribution is 

dQ = o 
R2 C ~V -+ m 2 Bc We 0 t 

dO· ~ R = - - p V - - -- -- + e 2 <Xl R V cosy V m <Xl <Xl 

Here R is the maximum rotor radius. 
m 

R - dz 
R m 



Thus 

The average torque for a slice of rotor dz in height is given by 

27T 7T 

dQT 
1 J dQT 

1 

Jd
QT = 

27T 
= 

7T 

0 0 

Since dQT varies with e and the torque is symmetric about the x-axis. The 

power is given by QT~ or 

Power = ~ 

z max 

J dQT 
-dz dz 

o 

where it is to be noted that R = R(z). 
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4.3 COMPARISON WITH EXPERIMENT 

Studies of references 11 and 12 give experimental results for Darrieus 

rotors with diameters of 12 to 14 feet with one, two, or three blades. The 

blades used in these studies were NACA 0012 sections having about a 6 inch 

chord. The resulting Reynolds numbers for the blades were of the order of 

3 • 105 . References 11 and 12 were used to check the analytical formulations 

of Templin, Muraca,and Wilson and Lissaman. The later analytical formulation 

was found to give the best results when compared to the data. Figures 4.3.1 

and 4.3.2 present a performance comparison between analytical and experimental 

results. There still exist notable differences between theory and experiment. 

TABLE 4.3.1 Aerodynamic Data Used in Calculation for 

Figures 4.3.1 and 4.3.2 

Maximum Lift Coefficient 

Maximum Drag Coefficient 

Stall Angle 

Lift Curve Slope 

For Angles of Attack, a less than 9.21° 

Lift Coefficient 

Drag Coefficient 

For Angles of Attack, a greater than 9.21° 

Lift Coefficient 

Drag Coefficient 

0.9 

2.0 

5.6/radian 

5.6a 

-5 2 0.014 + (S.255xlO )a 

0.9 

-0.lS4l + 0.029l2a 
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Figure 4.3.1 Comparison of Analytical and Measured Power Coefficients for 
Darrieus Rotors 
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Several observations can be made concerning this flow model for the Darrieus 

Rotor. 

1. The flow model predicts a maximum power coefficient which is less 

2. 

than that of an actuator disk (0.593). A closed-form solution 

for a Darrieus Rotor with circular arc blades and CD= 0 yields 

C = 0.536. P max 

The reduced frequency ( ~c ) has the same value for all test data 
2VLocal 

used. The value is about 0.04, small enough that the aerodynamics 

should be quasi-steady unless static stall is approached by the blades. 

Incorporation of the effects of unsteady lift into the analysis will 

result in two effects. First, the magnitude of the lift developed 

will be reduced. This will result in lower predicted performance. 

Second, the lift will lag the angle of attack. The principle effect 

of the phase lag is that the rotor will experience a net side force. 

3. Test data and theory both show that the three-bladed Darrieus rotor 

has the most desirable operating conditions, i.e. highest power out-

put and lowest runway speed and almost constant torque. 

4. Available test data covers power and overall force measurements only. 

A complete wake velocity survey has not yet been made by any of the 

. . eM 12 d ) lnvestlgators uraca ma e one traverse . Since any aerodynamic 

theory for Darrieus requires explicit knowledge of the induced 

velocity, a fundamental piece of information has yet to be obtained. 

5. The airfoil pitching moment does contribute to the rotor torque and 

hence to the power. For a symmetrical airfoil the pitching moment 

is zero below the stall when the aerodynamic forces can be considered 

quasi-steady. Above the stall symmetrical airfoils do experience 
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pitching moments. Because of the symmetry of the flow about 

the x-axis there is no net contribution of the pitching moment in 

this flow model. There would be a contribution to the blade loads 

however. 

6. The flow model predicts a near uniform total torque for a three-

bladed rotor at high tip speed ratios. However at lower tip speed 

ratios, the predicted total torque fluctuates considerably. The 

torque variation is of particular importance when using synchronous 

operation. Figure 4.3.3 illustrates the total torque as a function 

of blade position. Note that at a tip speed ratio of 3, there is 

no longer a near-uniform torque. When using synchronous operation, 

low tip speed ratios occur at high wind speeds. The character of 

the stall also has a large effect on the torque variation. 

Figure 4.3.4 illustrates the torque history for one blade of 

the rotor described in Figure 4.3.3. Again it may be noted that both 

the tip speed ratios and the character of the stall have a large effect 

on the predicted torque history. 

7. The maximum power coefficient predicted by this flow model is 

extremely sensitive to CL The maximum lift coefficient has a 
max 

large effect on the range of operating tip speed ratios. Figure 4.3.5 

illustrates the dimensionless performance of a family of three-bladed 

Darrieus Rotors for which the maximum lift coefficient varies by 0.1. 
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Figure 4.3.3 Rotor Torque vs Blade Position for a 3-Bladed Rotor at Various 
Tip Speed Ratios. R = 15 feet, Chord = 1 foot. max 
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4.4 MULTIPLE SOLUTIONS 

The iterative solution of Equation (4.2.1) can result in multiple solu-

tions for the Darrieus Rotor just as is the case for horizontal axis rotors. 

Recalling that equation (4.2.1) can be written in the form 

(C
T 

) 

L BLADE 

= (C
T 

) 

L MOMENTUM 

we may graphically illustrate the multiple solutions in the same manner 

as given in Chapter II. 

Figures 4.4.1, 4.4.2 and 4.4.3 show the effects of tip speed ratio, 

blade solidity and blade position on t!1e blade force equations. The same 

characteristic lift curve that was used in Chapter II was used to generate 

these curves. 
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CHAPTER V 

SAVONIUS ROTOR 

INTRODUCTION 

The Savonius Rotor was invented by S. J. Savonius of Finland in the 

early 1920's as a power source to drive Flettner rotors on ships. Savonius 

soon discovered that his S-shaped rotor developed more propulsive force 

than the Flettner rotor which generated thrust due to the Magnus effect. 

His first application of the rotor was to drive a small boat. Since 

Savonius l published his work in 1931 a variety of other applications have 
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been conceived, including exhaust fans, propelling toy ships, and generating 

electricity. The later use has generated interest to investigate this type 

of rotor. 

10 The Savonius Rotor has been experimentally investigated by Bach , 

11 . 12 7 Simonds and Bodek ,Mercler ,Newman, and others. Because of the large 

side forces developed by the Savonius Rotor, wind tunnel test results must 

be viewed with caution. 

Wind tunnel testing of Savonius Rotors requires a much larger ratio 

of tunnel area to rotor area since the wake experiences large crosswind 

forces as well as moderate windwise forces. 

In this chapter, the flow field is described and an analytical 

model is developed for performance analysis of this rotor. This is the 

first time the analysis of the Savonius Rotor has been presented. 
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5.1 DESCRIPTION OF FLOW FIELD 

From the global point of view the operation of a Savonius type rotor 

is like that of any other windmill device. The free stream flow (or wind) 

produces an aerodynamic force on the rotor blading and this blading moves 

with at least some component of the aerodynamic force in the direction of 

motion. Thus work is done on the machine and energy extracted from the 

flow. This energy extraction is associated with change in total head of 

portions of the flow, which is always kinematically realized by the gener-

ation of vorticity. This is expressed in its most basic form by Crocco's 

Equation. 

-+-

V x Q = VH - TVS + ~~ 

Here V is the local velocity vector, Q the vorticity, H the total energy 

or stagnation enthalpy, T and S the temperature and entropy. This indicates 

that, neglecting viscosity and heat conduction, vorticity must always be in 

the flow field when the distribution of total energy H or the entropy S is 

non-uniform. It is also of interest to observe that for this condition 

-+- -+-
the vorticity, rl, cannot be parallel to the local flow, V. This vorticity 

appears in the form of discrete vortices, of vortex sheets, and of regions 

of distributed vorticity. The vorticity will extend downstream and will 

manifest the kinematics defining the forces on the rotor, and the power 

extracted from the flow. 

For the specific case of the Savonius type rotor there is always a 

significant unsteady flow component. This is in distinction to some other 

types where, although unsteady flows always occur, the effects of the 

unsteadiness may be sufficiently small that a steady or quasisteady 



113 

approach can be used for analysis. To illustrate these effects we discuss 

and describe the actual flow as illustrated by motion picture records of 

flow in one type of Savonius machine. 

The motion pictures 2 (Figure 5.1.1) show smoke streak lines of a Savonius 

rotor operating at zero power coefficient at a free stream speed of about 

32 ft/sec, a Reynolds number, based on free stream speed and rotor total 

diameter, of about .094 million and a tip speed ratio of about 1.64. The 

flow is from left to right and the rotor turns in a clockwise direction. 

In analyzing these photographs it must be clearly recognized that the smoke 

lines are streak lines, and as such are not parallel to the streamlines 

of the flow, nor is their spacing inversely proportional to the flow 

velocity as would be the case with streamlines. We will refer to the 

blade on the left in frame 1 as vane 1, the other as vane 2, with the 

outer edge as the tip. We will define vorticity in the same sense as the 

rotation (clockwise) as positive vorticity. 

The frames have been printed directly from a positive motion picture, 

that is areas shown dark in the figures are in reality light, and the real 

smoke was white against a dark background. The rotor end plate is indi

cated by a dark circular ring of larger radius than the vanes, while the 

rotor support shaft is the light bar extending upwards from the rotor 

axis at 10 o'clock radial position. 

From frame 1 through frame 22 we note that there is apparently 

attached flow on both the convex and concave faces of vane 1, while vane 

2 appears to show separation on its convex face. At frame 22 we observe 

the beginning of vorticity shedding from the tip of vane 1 developing 

into a positive vortex near the tip of vane 1 in frame 29. It appears 
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that the vortex shedding on vane 1 begins when the dividing streak line 

(corresponding to the stagnation streamline in steady flow) reaches the 

tip of this vane in frame 23. Vane 2 appears to show distinct separated 

flow on its concave face in frames 20 through 32. 

By frame 43 the vorticity shed from vane 1 has organized itself 

into a "free" vortex and is proceeding downstream at a distinct downwash 

angle and, taking this downwash into account at approximately the tip 

radius separation of vane 1 in frame 25. It will be noted that the flow 

picture has returned to that of frame 1, with vane 2 in the position of 

vane 2. 

The process of vortex shedding from the advancing blade (vane 2) is 

not as easy to determine. In frames 2 through 7 we observe the formation 

of an indistinct region of smoke on the forward portion of convex face 

of vane 2. This appears approximately fixed with respect to the observer, 

that is it seems to move backwards along the vane with time until it appears 

to join with the flow on the concave face of vane 2 at frames 19 through 

21. What appears to be a negative vortex (possibly also containing low 

energy separated flow) can be seen in frames 29 through 39. This vortex 

is best identified by the cusp like streak line in frames 30 through 34. 

This cusp appears near the edge of the rotor end plate on an imaginary 

line which is the extension of the rotor support strut. This cusp can 

be seen to move downwards and backwards, with its predecessor near the 

bottom of the picture in frames 1 through 19. 

It is of interest to note that the motion picture appears to indicate 

a non-uniform rotational speed in the vicinity of frames 4 through 7 where 

the rotor speed seems to have significantly slowed down. 
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Fig. 5.1.1 Flow Field of Savonius Rotor. Frames 1-8. 
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Fig. 5.1.1 (cont.). Flow Field of Savonius Rotor. Frames 9-16. 
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Fig. 5.1.1 (cont.) Flow Field of Savonius Rotor. Frames 17-24. 
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28 32 

Fig. 5.1.1 (cont.) Flow Field of Savonius Rotor. Frames 25-32. 
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36 40 

Fig. 5.1.1 (cont.) Flow Field of Savonius Rotor. Frames 33-40. 
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41 

42 

43 

Fig. 5.1.1 (cont.) Flow Field of Savonius Rotor. Frames 41-43. 



The flow system described above is very helpful in constructing a 

rational flow model for analysis. The major discernible features are 

reiterated below: 

1) Distinct vortices are shed from the vane tips when the vane is 

approximately at right angles to the flow. 
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2) These vortices are counter rotating with the one from the retreat

ing vane rotating in the same sense as the rotor itself. 

3) The shed vortices move rearward at approximately free stream speed, 

with a distinct downwash associated with bound vorticity of the 

same sense as the vane rotation. 

4) There appears to be attached flow on both sides of the retreating 

vane. 

Other features of the flow are less easy to specify definitively. 

Unfortunately, the movie frame does not show far wake details and extends 

only about two rotor diameters downstream. Thus the nature of the vortex 

shed from the advancing vane is not recorded since due to the downwash 

it occurs below the movie frame. This would be of particular interest 

since it is in this vortex that any large separation regions might be 

expected to occur. 

Thus tentative conclusions which can be drawn are: 

1) There appears to be a separated flow on both sides of the advancing 

vane when it is approximately normal to the flow. 

2) This separated flow is apparently shed as a bubble and contains 

the vortex shed from the advancing blade. 

3) The advancing blade vortex apparently contains a region of low 

energy flow, which extends towards the wake centerline as the 

vortex moves downstream. 
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A number of questions are raised, which cannot be answered by the 

existing photographs. These questiDTIS are posed as very worthwhile 

research topics for future flow visualization work. 

1) Does the character of the flow change with tip speed ratio? 

Particularly, what is the flow picture at the tip speed ratio 

corresponding to maximum power? 

2) What is the nature and location of the flow separation? 

3) If the vortices are shed approximately simultaneously from top 

and botton vanes, are they unstable as they proceed downstream 

" -- 3 as would be expected from Von Karman's analysis? 

4) It is believed that the flow shown in the movies was for zero 

power coefficient. Does this imply that the flow is non-represen-

tative of power generating states and that it contains larger 

regions of low energy flow than would occur under maximum power 

extraction? 
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5.2 INVISCID ANALYTICAL MODEL 

5.2.1 Discussion of Analytical Model 

It is evident that the flow field which must be analyzed is certainly 

unsteady and cyclic, and probably also separated in certain tip speed ratio 

ranges. We will treat this with a potential analysis, which will thus 

ignore any separation effects. 

Even the potential analysis involves serious theoretical difficulties 

which relate to assumptions concerning the flow near the rotor tip, and 

the induced flow of the shed vorticity. We will first discuss the tip 

flow. 

For simplicity in the model we have considered a two vaned rotor 

with no center gap, that is it is an S shaped airfoil of zero thickness, 

with camber antisymmetic about the half chord, and rotating about the 

half chord. We will call the extremities (the outer edges) the tips, and 

note that there are no grounds for them to be either leading or trailing 

edges. There is no apriori reason to assume a Kutta condition (no flow 

around the trailing edge) occurs, and thus no method of establishing a 

circulation. 

If we assume that all details of the external flow (that is the 

induced wash and any wake vorticity) are known, then the kinematic boundary 

conditions are uniquely defined and in principle we can determine an exact 

potential flow solution for the rotating vane. However, there is a 

circulatory potential solution which also matches all kinematic boundary 

conditions on the rotor, which can be added like a homogeneous solution 

to any selected solution. This homogeneous solution can really only be 

determined by boundary conditions at infinity, where it produces a pertur-
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bation similar to that of a point vortex, thus it dictates the circula

tion about the rotor. Thus the unsteady solution can be determined subject 

to a circulatory solution of arbitrary magnitude. 

In classical airfoil theory, this ambiguity is resolved by a local 

condition, namely the application of the Kutta condition to flow at what 

is arbitrarily defined as the trailing edge of the airfoil. Under normal 

conditions of steady flow, rounded leading edge, sharp trailing edge and 

representative viscosity, the application of the Kutta condition to the 

trailing edge gives excellent correlation with experiment. 

In the case of the Savonius rotor conditions are quite different. 

First we note that with unsteady flows it is possible to have a noncircu

latory potential flow w,ith flow around sharp edges - however this flow 

exists for a very short time and is followed by vortex shedding 

from these sharp edges although the flow remains potential with no separ

ation of the type associated with a low energy wake. It is not clear how 

long the non-circulatory flow exists, but theoretical calculations (Hunt4) 

suggest that, for sharp edges, vortex shedding commences immediately. 

Now, it is possible to add a circulatory component to the solution which 

will eliminate flow around one or the other tip, but a Kutta condition on 

each tip cannot be achieved unless there is a special distribution of vor

ticity in the wake. However, it is always possible to satisfy the Kutta 

condition at a tip if vorticity is shed into the stream. 

This technique was used by Karman and Sears 3 in their classic paper on 

unsteady airfoil theory. In their case, a single trailing edge was defined 

by the airfoil geometry, and this edge was considered a source of vor

ticity flux into the stream. Now, subject to various vorticity conser-



vation and convection laws, and the assumption that there is never 

flow around the trailing edge (Kutta) it becomes possible to uniquely 

define the unsteady circulation. It would be possible to apply the 

Karman-Sears methodology to our problem with the basic assumption that 

Kutta condition must be satisfied at both tips of the rotor, and that 

vorticity is shed from these tips to maintin this flow. This approach 
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is much more complicated than can be treated here. The approximation used 

here is consistent with the approximation for wake vorticity and we will 

describe it after discussing the wake vorticity or induced flow models. 

It is well known for propeller-type rotors that the drag on the disc 

is represented by a reduction in wind speed through the rotor, known as 

axial interference, or drag induced flow. 

For propeller rotors and for crosswind axis machines of the Darrieus 

type, this can be represented as a uniform steady flow, at least in an 

annulus, or in a "slice" for the crosswind axis machine. The implication 

here is that the rotor develops a wake of dimensions comparable to the 

swept frontal area, and that this wake is steady and bounded by a vortex 

sheet shed from the rotor. Conditions necessary for this to be a good 

assumption are that product of the number of blades and the tip speed 

ratio should be large. 

For the two-vaned Savonius rotor neither of these conditions are 

satisfied so that the wake cannot strictly be represented by a pair of 

vortex sheets of uniform strength and separation. In fact, the vortex 

shedding is cyclic and the positions from which vorticity is shed vary 

so that the wake varies both in width and vorticity. We note that this 

is one degree more complicated than the Karman-Sears analysis, where the 
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wake varies in strength but not in lateral (crosswind) position. In the 

actual case of the Savonius, the wake is apparently of approximately 

sinusoidally varying width, with vortex sheet strength also approximately 

sinusoidal with maximum strength at greatest wake width. Recognizing the 

complexity of computing the spatially varying induced field due to such 

a system and the further complication of consistently matching this 

vorticity to the vane shedding and the induced flows to the kinematic 

vane boundary conditions we assume as a first approximation that the 

wake can be treated like a vortex tube of constant strength and rectang-

ular cross section. 

On this basis the induced flow will be uniform across the vane, and 

the vane will respond as though it were in a stream of reduced velocity 

V (I-a) where V is the free stream velocity and a the windwise induction 
00 00 

ratio. This stream will also be deflected in a crosswind direction 

associated with the crosswind or lift force on the vane. 

Subject to this assumption, we now note that it will be impossible 

to meet Kutta conditions at both of the vane tips since only a single 

circulation variable is available. On this basis, the most rational 

choice of circulation is that which simultaneously minimizes the flow 

around both tips. 

Thus, for the analysis of the following section we have initially 

used the most simple rational model. This model is sufficient to repro-

duce the main observed characteristics of the Savonius rotors. 
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5.2.2 Description of Potential Functions 

Before embarking on the mathematical analysis it is useful to describe 

the nature of the three potential functions employed in the theoretical 

solution. If we consider a vane in the position shown, Figure 5.2.1, we 

note the three velocity components which specify the kinematic boundary 

conditions. Potential functions satisfying each of these can be defined 

and we describe them as ¢n, that due to flow normal to the vane V (I-a) 
00 

sin ¢, ¢c that due to flow across the vane Voo(l-a) cos e and ¢~ that due 

to the rotation induced velocity, ~r. 

We show the character of the potential and distributed vane vorticity 

in order to illustrate the contribution of each component. 

The potential is shown in Figure 5.2.2, the distributed vorticity in 

Figure 5.2.3. We note that the local pressure force is related to the time 

derivative of ¢, ¢t and to the spatial derivative ¢r' which is directly 

proportional to the local vortictiy. 

First we note that the ~n, ~c vorticity components will generally 

produce flow aro~nd the tips. However the arrangement shown actually 

minimizes the net total tip flow since any additional circulatory compo-

nent will reduce flow around one tip but increase it at the other. 

n c 
We note that ~ , ~ produce torque moments, but no net lift, while 

¢c produces a lift without any moment. It is noted that ~~ does automat-

ically satisfy a Kutta condition at each tip, also that there always exists 

an angle of the vane at which the tip Kutta condition is satisfied. This 

angle corresponds to the ideal angle when the rotor is treated as a cambered 

airfoil, and is independent of the angular velocity. 
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NORMAL COMPONENT 

Figure 5.2.2 Vane Potential Distribution 
for Each Flow Component 

CROSS FLOW COMPONENT 
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Figure 5.2.3 Vane Vorticity Distribution 
for Each Potential Component 
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It is also noted that there is a circulation developed on the rotor, 

which is independent of rotor angle and vane camber and is related linearly 

to the angular velocity~. Thus, in this model the circulation remains 

constant throughout the cycle. However, this does not imply that the lift 

is constant through the cycle since unsteady terms contribute to the 

total lift, causing it to be different from that implied by the vane 

circulation alone. 

5.2.3 Potential Analysis for Two-Dimensional, Uniform Wake Model 

Consider the geometry of Figure 5.2.4. . We have a two-vaned rotor of radius 

R and angular velocity ~ in a stream of uniform velocity V* = Voo(l-a). 

The rotor has antisymmetric camber defined by C = SRf(r) where r is the 

radius position normalized by the outer radius R. The non-dimensional term 

S now plays the same role as blade angle of attack. Then, assuming we have 

a perturbation potential giv.en by V*R<jl(r,t,8) we see by linearized theory 

that the normal derivative of this potential is given by 

V*<jl = V*sin 8 + V* cos8 S fl - ~Rr 
n 

We now write <jl as 

where X* is the local tip speed ratio ~r/V*. 

where each potential is identified through it.s inner boundary condition, 

(B.C.) , as follows 

<jln is the normal potential with B.C. <jln = I n 
<jlc is the camber potential with B.C. <jlc = fl 

n 
<jl~ is the rotational potential with B.C. <jl~ = r n 
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We now note that in an unsteady coordinate system rotating with the vane 

we can write the net pressure cOB£ficient on the vane 

* * C = -~p/l/2 pV 2 as 
p 

* * Cp = ,+ 4 (CPr Cose + X CPe) 

From this we can calculate loads on the rotor. 

TORQUE 

The local torque on an element is given by 

While the mean torque Q of both values is given by 

1 21T 

I 1 
Defining the torque coefficient as 

we get 

1 

I cpc r dr 
r 

* C r de dr 
p 

We can identify cpc in a simple fashion, according to steady aero-

dynamics. If we consider the case of X* = 0, e = 0 

1 

I cpc r dr 
r 

But, if we take the vane as a reflexed airfoil of chord 2R we see 
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~fuere C is the pitching moment of the airfoil at zero lift about the 
m 

mid chord. Since it is at zero lift, it can also be identifed as 

C ,the pitching moment about the quarter chord. Thus we obtain 
m 

o 
the interesting result 

* 
CQ - C = C m m 

0 

and 

1 

213 1 c 
C = ~ r dr m r 

DRAG 

The local drag is given by 

D = 1/2 pV*2R C* dr sin e 
p 

while the mean drag D of both vanes is given by 

1 27f 

* I I C sinS de dr 
p 

Defining the drag coefficient 

1 
* * J r ¢~ dr CD = 213 X 

* 
0 

= X C m 

LIFT 

Similary, the lift is given by 

1 

J * * CL = 2 X 

o 

2 C* = D/pV* R we get 
D 

We now note from the boundary conditions that ~Q = ~n 
r 

Thus 

1 
* * CL = 4X 1 
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5.2.4 Comparison with Basic Power Extraction Theory and Global Results 

If we now assume a two-dimensional rotor, so that there is no wake 

deflection 

* CD = 4a/ (I-a) 
,~ 

X C m 

Now we can write the power coefficient based on pV:R2 and the conven-

tional tip speed ratio X = nR/Voo as 

2 * C = X C (I-a) but X = X/(l-a) 
p m 

But XC = 4a from first equation above 
m 

Thus C = 4a(1-a)2 recovering the well known result for power coefficient 
p 

under conditions of uniform induced wake flow. We note that we can write 

C as 
p 

XC 2 
C = X C (1 - ~) 

p m 4 

Next considering the lifting term, CL, we note that the only potential 

with circulatory component is ~n and that the circulation, r, is constant 

given by 

1 
* I x*.~ r = 4V R dr 

0 
I 

* J .~ r = 4V RX dr 

o 1 
* * J ~n dr r = 4V RX 

0 



* But applying the Joukowsky theorem L :::; pV r we get 

1 
* * C
L 

:::; 4X i ~n dr 

which is an explicit representation of the well known Magnus effect and 

recovers the result from direct integration. 

Now noting that ~n :::; /1_r2 we get 

* * CL :::; X 'IT 

* Thus we determine the circulation r t.o be given by r :::; V RC
L

. 

If we express this in terms of the tip speed Vt ' we obtain 

This result is interesting since for a rotating circular cylinder, 

assuming the no slip condition we would get r :::; 2 Vt'ITR. This may be 

expected to be the result obtained for an infinite number of vanes. 

Thus, based on this assumption we note that the two-vaned rotor develops 

half the circulation associated with an infinite number of vanes. 

It is also of interest to observe that although the circulation is 

constant throughout the cycle, the lift is not, varying from a maximum 

at e :::; 0 to zero at e :::; 'IT/2 such that the mean lift per cycle is given 

* by pV r. 

It is shown in the next section that for typical antisymmetric 

camber shapes the pitching moment is given approximately by 'ITS. Thus 

135 



136 

for 8 = 1/2, corresponding approximately to semicircular arc vanes we get 

the lift to drag ratio given by 

This indicates that the crosswind force on the Savonius rotor is larger 

than the windwise force. 

5.2.5 Pitching Moment of Vane 

For the vane shape it is a simple matter to compute the pitching 

moment if linear theory is used. It is certainly true that the magnitude 

of camber of the vane is such that slopes are not small enough to justify, 

a priori, the accuracy of linearized theory. However it is a matter of 

interest that linearized theory gives excellent accuracy for thin airfoils 

of large camber. For example, the lift coefficient at zero angle of attack 

for a parabolic arc is given by linear theory as 4TI8, where 8 is the dimen-

sionless camber (ratio of maximum camber height to chord), while for a 

semi-circular arc airfoil exact nonlinear theory gives the result 4TI8. 

where 

5 Glauert gives the required pitching moment, C , as 
m 

C = 2].1 - TIE: /2 m 0 

I 

].1 = 1 y(I-2xl dx 
Ix (I-x) 

I 

s = J y dx 
0 TI(I-x) Ix(l-x) 

0 

with y the camber height and x the chordwise position, both normalized on 

unit chord. 

For a typical antisymmetric reflexed camber line given by the cubic 

y = 8613 x (I-x) (1-2x) 



We can exactly compute the pitching moment to be 

C = TIS 9r3 I 16 
m 

= 0.975 TIS. 

For a camber line consisting of two joined semicircular arcs ~ 

can be exactly computed, but s becomes logarithmically unbounded because 
o 

of the infinite camberline slope at the trailing edge ex=l) , as might 

have been expected from the small slope limitations of linear theory. 

This can be arbitrarily regularized by applying the procedure recommended 

in Glauert, which is to approximate the last 5% of the camberline by a 

straight line of finite slope having the same ordinate at 95% chord as the 

original camber line. 

On this basis, for a camber line of a pair of semi-circular arcs, 

the moment is given by 

Cm = 0.858 TIS. 

We note that this is slightly less than the cubic camber line, which 

is to be expected, since the maximum camber of the cubic occurs further 

out towards the tip than that of the circular arc camber. 

Since the constant in the moment equation is approximately unity, 

it is convenient to introduce an effective camber, B , defined by e 
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This effective camber is now independent of the vane camber line 

details, but is approximately equal to the physical camber, for example, 

for a semicircular arc of physical camber S we find 

Se 0.858 S 

5.2.6 Effect of Non-Uniform Induced Flow 

The analysis so far has considered an induced flow which is uniform 

in the direction across the wind. This could be produced only by a wake 

containing no interior vorticity, that is having a vortex sheet only on its 

boundaries. This would imply that vorticity was shed from the vane only 

when it was at the 8 = Tr/2 position, that is at right angles to the wind. 

Now the main source of wake vorticity is the rate of change of vorticity 

induced by vane camber, this vane camber term varies like cos 8, so that 

its temporal gradient is like sin 8, indicating that vorticity is shed 

throughout the wake. However, we are not entitled to make the many-bladed, 

high..,tip-speed-ratio (NX -+ 00) assumption used in Darrieus rotor theory, 

thus we must assume that the wake width varies in some approximately sinu

soidal fashion. The wake vorticity and induced flow is shown in Figure 

5.2.5. It will be seen that the axial induction, which relates to the 

drag, varies in a consistent way such that induction and drag are maximum 

at 8 = Tr/2. 

It is thus clear that wake induction varies in both the wind-wise 

and cross-wind direction. It is believed that this effect is too compli

cated to take into account here, especially when other approximations 

inherent to the analysis are considered. 
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As a first-order approximation, which may be somewhat more realistic 

than the uniform wake assumed in the previous section we will assume that 

the wake varies in the cross wind direction (the sheared wake model) so 

that the local velocity at the rotor has the form 

V (l-a sin2 e) 
00 

We will still assume that the wake is uniform in the wind-wise direction. 

Subject to this assumption, it is now necessary to equate the loads 

evaluated in the wake to the local vane loads. The wake loads can be 

estimated by standard momentum analysis, and this is done in the next 

section. The local vane load computation would be an extremely compli-

cated procedure since the rotor is immersed in a highly non-uniform flow. 

As an approximation, we will make the assumption that the major 

contribution to the mean lift load occurs when the vane is in the hori-

zontal position so that we use the results for the vane in a uniform 

stream with velocity V (I-a). For the drag force we assume that the major 
00 

contribution occurs when the vane is approximately at right angles to the 

flow, and thus assume that we can define an equivalent uniform wake velocity 

of magnitude related to some mean position of the vane. 

Under this sheared-wake assumption the onset velocity at any station 

on the vane is given by 

= V (l-a)S 
00 

where S is the sheared-flow factor and is given by 



140 

S (1 - a/ 1 - r 2 cos 2 e ) / (I-a) 

On this basis we obtain for the drag coefficient at the vane, CD' 

--....... ./ '\ 
I \ 
I + I 
\ I 
\ I '-_/ 

I VANE 

2 VANES 

AXIAL INDUCTION, 2 VANES 

4 VANES 

Figure 5.2.5 Wake Vorticity Geometry for Different Vane Numbers 



The selection of S is certainly arbitrary but for our calculations 

we have simply used r2 = 1/4, e = 67.5°. 

Thus, for the local forces as computed in section 5.2.3, we obtain 

C
L 

= X7f (I-a) 

CD = X Cm (l-a) S2 

where S is the shear factor. 

These local forces may then be used in the full three-dimensional 

force balance. 

5.2.7 Three Dimensional Effects 
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Because the rotor experiences a cross-wind force which is of comparable 

magnitude to the drag force there will be a significant defelection of the 

wake in the cross-wind direction. This implies that the outer flow, which 

did not pass through the rotor will also be affected, and these considerations 

must be taken into account in determining the induced fields at the rotor. 

Consistent with linear theory, we will assume that both the wind-wise 

velocity perturbation, a, and the cross-wind deflection angle, a, will 

develop to twice the value at the rotor when they are in the far down-

stream wake (the Trefftz Plane). This is shown in Figure 5.2.6. We use 

this assumption to determine the forces on the rotor, then equate to the 

forces determined directly on the rotor to obtain equations for a and a in 

terms of rotor geometry. 

Forces in Trefftz Plane 

As in the method used in V/STOL aerodynamics with powered wakes we 

must consider both the rotor flow from which energy has been removed, and 

the outer isoenergetic flow. 
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Rotor Flow 

The force in the direction of the distant wind, F can be written 
x 

F 
x 

b 

R .t: V~[1-a(y)12V~a(y)dy 
-R 

where integration is performed across the rotor disc, of extent 2R. 

For uniform flow this becomes in coefficient form with e = F /V2Rb x x 00 

e = 4a(1-a) 
x 

For sheared flow of the form a(y) 

ex = ~a(l - :~ a) 

a cos 8 with y = R sin 8 we get 

which will be seen to be a very similar expression. 

The crosswind force, F , can be written in coefficient form as 
y 

e 
y 

2a 

1 

L [l-a(y)] [1-2a(y)]dy/R. 

For uniform flow we get 

C = 4a(1-a) (1-2a) y 

While for the sheared flow we get 

3~ 4 2 
Cy = 4a(1 - ~ a + 3 a ) 
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Outer Flow 

Here we consider the outer flow defelected by the cToss-wind wash of 

the rotor flow. We can show that this flow corresponds exactly to the added 

mass of a rectangle of sides 2R, b. For cross flow normal to the span, 

b, this added mass is given by Arrb 2 where A depends upon the aspect ratio, 

A, of the rectangle, given by A = b/2R. 

The added mass constant A can be determined by standard conformal 

mapping procedure. For our purposes, we need an operational formula. By 

6 curve fitting the exact results given by Wendel we can show that 

A = I + 0.5/ ~ 1 < A < 10 

with less than 1% error. 

Then for the outer flow we get the second order expression 

c 0 = 20: 2 ATfA/2 
x 

While for the cross wind force we get 

c 0 20: ArrA/2 
y 

Rotor Forces 

Recalling that the rotor forces were determined with respect to the 

local flm.,r, which is inclined at an angle 0: we get 



Equating Trefftz and Rotor Forces 

Observing that because we are maintaining first order linear theory 

the drag term of the outer flow is negligble we obtain 

C + C 0 
Y Y 

It will be noted that the above pair of equations can be used to 

express a variety of cases, for example :Letting A -+ 00 recovers the result 

X'IT8 S = C e x 

While reversing the sign of XS either by rotating in the opposite 

direction, or reversing the camber gives a propulsive device adding 

power to the airstream. It may be noted too that letting X -+ 0 recovers 

the correct tip-plated multiplane-lifting solution. 

Thea, writing C = 8'IT where 8 is the effective camber; CL = X'IT(l-a) m e e 

and CD = A CmCl-a)S2, we can simplify these equations. The cross-flow 

angle can be eliminated from the pair to give a quadratic in X, with L*, 

0* defined as force coefficients determined in the Trefftz Plane. 

where 

The quadratic becomes: 

aL* = (C + C o)/(l_a) 
y y 

D* = C I(l-a) x 
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For given vane camber, S, aspect ratio A, and induced flow profile 

a = a(y) the above can be solved for X, then the inviscid power coefficient 

determined. 

5.2.8 Results of Inviscid Calculation 

The equations presented in the previous sections make it possible to 

compute torque or power coefficients for an arbitrary range of camber 

pitching moment and aspect ratio. If it is assumed that there is no 

central slot or gap, that is that the vanes are joined at the rotor axis, 

then these are the only variables. It is noted that there is an infinite 

range of camber line shapes, but according to this theory they can be 

collapsed if C , the vane pitching moment, is considered as the variable. m 

It will be observed that this is very similar to monoplane wing theory, 

with the advance ratio, X, corresponding to wing angle of attack, and 

camber or pitching moment and aspect ratio playing similar roles in the 

rotor as they do in the wing. As in wing theory, the details of the 

camber line are only important if viscous effects relating to separation 

are significant. 

Since most Savonius rotors have circular arc vane shapes, the inviscid 

performance curves are plotted for this type of camber line. The figures 

illustrate the effect of aspect ratio and magnitude of camber as well as 

the differences due to assuming uniform or sheared wakes. 

Performance curves are shown in Figures 5.2.7 through 5.2.10. It will 

be noted that the aspect ratio effects are quite large and are still present 

even at aspect ratios of 10. 
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To illustrate the significance of the wake model, Figure 5.2.11 shows 

the different performances for a representative rotor of semicircular camber 

and aspect ratio 5.0 for the uniform or sheared wake assumption. It is 

evident that the wake model has a major effect on predicted inviscid per-

formance. 

o 1.0 

X= R.n 
V. 

2.0 

Figure 5.2.7 Inviscid Power Coefficient for Uniform Wake Model with Semicircular 
Vane (13 = 0.5) 
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0.4 

0.3 
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o 
o 1.0 

X 
2.0 

Figure 5.2.8 Inviscid Power Coefficient for Uniform Wake Model with Low Camber 
Vane (S = 0.25) 

o 0.2 x 

Figure 5.2.9 Inviscid Power Coefficient for Sheared Wake Model with Semi
circular Vane (S = 0.5) 
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2.0 

Figure 5.2.10 Inviscid Power Coefficient for Sheared Wake Model with Low Camber 
Vane (S = 0.25) 

0.5 
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0.3 
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1.0 
X 

2.0 

Figure 5.2.11 Comparison of Uniform and Sheared Wake Models for Typical Rotor 
(S = 0.5, A = 5) 
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5.3 VISCOUS EFFECTS ON POWER COEFFICIENT 

5.3.1 General 

It is to be expected that viscosity will cause the power coefficient 

to be lower than that computed by potential methods. For propeller type 

rotors and Darrieus rotors these effects can be treated quite adequately 

by methods already used in wing and airfoil analysis; that is, it is assumed 

that viscosity develops profile drag, that is a force roughly parallel 

to the airfoil chord. This force then can be introduced into the torque 

equation where it normally appears as a term resisting rotation and hence 

reducing the torque produced in ideal flow. It is of interest to note that 

for the Savonius rotor, any direct-skin-shear stress due to viscosity will 

not produce a significant effect on the torque because of the geometry of 

the roto~. 

However, it is probable that the viscous effects are indeed large. 

We have no direct estimation of this, because there are no results compar-

ing test data with the potential flow solution. Wind tunnel corrections 

due both to wake blockage and to wake deflection can be large, and as 

pointed out by Newman7 some previously published test data may require 

adjustment for tunnel corrections. However, Newmans reports shows two 

factors indicating the importance of viscous effects. The first is that 

the maximum C is about 0.18 when theoretical considerations suggest one 
p 

might achieve at least about 0.30, the second is the quite distinct deter-

ioration of rotor performance for reduction in free-speed Reynolds number. 

Here, Newman shows a degradation of C from about 0.30 to 0.28 for Reynolds 
p 

number changes from 1.9 a 105 to 1.0 x 105. Note this is tunnel Cp ' which 

must be reduced by about 30% for wall effects. 
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We have pointed out that to obtain viscous power losses of this magni-

tude, one cannot expect skin shear terms to do it. Thus we must search for 

a mechanism by which the viscous effects can create pressure perturbations 

on the vanes. One obvious mechanism is separation-from the advancing vane, 

changing the unsteady potential pressures~ A further mechanism is viscous 

pumping by which the angular velocity causes the boundary layers on the 

vane to flow radially outwards towards the tips. Presumably the modified 

boundary layer displacement thickness due to this will change the vane 

effective camber, so that the pressure fields on the vane will differ from 

those computed in the inviscid case. Thus this does constitute a mechanism 

by which viscous effects can produce pressure pertubations on the blades 

without separation occurring. 

A further viscous effect which will reduce output power of the rotor occurs 

at the tip plates. Frequently these are circular discs of radius somewhat larger 

than the rotor radius. This is the only place where viscous shear produces direct 

power loss torque and, although the mechanism can easily be visualized, there is 

no valid theory for the torque on a rotating plate in a uniform flow. 

Some estimates of the magnitude of these viscous power losses in attached 

flow has been made and is described in the next paragraphs. It will be seen 

that the losses do not appear to be of sufficient magnitude to account for the 

actual loss which is believed to occur. 

5.3.2 Estimate of Viscous Losses in Attached Flow 

Tip Plates 

The torque on a circular disc of radius R*, rotating at an angular velocity 

* of ~ can be defined in terms of the mean torque moment CM where 

* C
M 

= 2M/Cl/2 p~2R*5) 

with M being the torque for a disc wetted on both sides. 
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The torque coefficient C * has been given (Schlichting8) in terms of 
m 

rotational Reynolds number, RQ, (= R* Q/v) as 

* 

= 0.146 (R ) -1/5 
Q 

* The value of C m 
4 t:; 

in the intermediate transition range 5xlO <RQ<5xlO~ 

depends upon plate roughness. 

For two fully wetted side plates we obtain the viscous power loss, 

C ,in standard coefficient form as 
pv 

C * m 
= 4A 

where A is the rotor aspect ratio 2R/h and r the ratio of tip plate size, R', 

to rotor radius R, that is r = R'/R. For an estimate of the magnitude of 

7 this effect we consider the tests reported by Newman 

Here we take a rotor of aspect ratio. 1.50 with r ~ 1.0. At X ~ 1, 

R 1 20 105 ., C we get Q ~ . x glvlng 
pv 

.010. Since the maximum measured 

corrected power coefficient is of order 0.20 at X = 0.90 these viscous 

terms are not large enough to grossly affect the character of the inviscid 

calculations. We note that the formula for disc torque used here is strictly 

for a disc rotating in still air, and thus could not be a good approximation 

for tip speeds significantly greater than zero, still the power loss due 

to the tip plates appears to be about an order of magnitude less than that 

actually occurring. 
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Viscous Induced Torque Losses on Vane 

Evidently we cannot at this stage compute the boundary layer on the 

vanes themselves. However, a crude estimate can be made using the 

assumption that the vane camber is reduced proportionately to the boundary 

layer displacement thickness. If we assume that there is some effective 

boundary layer displacement thickness, 8*, on the vane, which is directly 

functionally related to the drag of the vane when regarded as an airfoil then 

8*/R = k CD 

where k is expected to be of order one, and CD is the profile drag coefficient 

at the appropriate Reynolds number. Then, assuming the CM, the vane pitching 

moment is a function of effective camber, we estimate that the ratio of viscous 

power loss due to vane boundary layers to inviscid power must be 

C = k 
Pv 

2 
CD X (l-a) 

To roughly estimate CD we simply use data given by Schmitz 8 for flat 

and cambered plates at low Reynolds number. Schmitz gives CD values between 

5 0.01 and 0.04 at Reynolds number of about 0.75 x 10. Noting that CM is 

about 0.5 for semicircular vanes, we note that this correction appears to 

be at most 1/10 of the inviscid power. 
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5.3.3 Heuristic Approach to Viscous Correction 

As explained, the various attached flow viscous corrections do not 

appear to be of sufficiently large magnitude. However, we have one set 

of test data (Newman7) in which the measured performance (C versus X) 
p 

of a rotor is plotted for three different Reynolds numbers. In principal 

this provides sufficient information to infer the viscous correction, if 

we postulate some general functional dependence. To a certain extent, this 

dependence can be estimated by examination of the differences in power 

coefficient for varying Reynolds number while holding tip speed ratio 

fixed. Extracting this data gives rise to a pair of curves (uncorrected 

for wind tunnel constraint) giving the difference in correction at dif-

ferent Reynolds numbers as a function of tip speed ratio. If the viscous 

power (uncorrected) is assumed to be of the form 

where R is the Reynolds number based on free stream speed and vane 

diameter (2VR/v) we propose a viscous power term of the form 

where constraints and exponents have been deliberately rounded off to 

express the approximate nature of the computation. 

The quality of this fit is shown in Figure 5.3.1. Here we have plotted 

the difference in power coefficient 6C 0 from that occurring at R = 100,000 
P 

from the power coefficients at R = 160,000 and R = 190,000. It will be 



seen that this is a reasonable fit for tip speed ratios in excess of 0.6. 

For tip speed ratios lower than this it is expected that the flow separa-

tion is of a different nature. 

We must now adjust this result for the tunnel constraint. Because 

of the very approximate nature of this approach we will not attempt to 

compute a tunnel correction varying with tip speed ratio but simply use 

the maximum correction employed in the reference paper, here in Figure 

7 5.2.8 of Newman a correction on measured wind tunnel power coefficient 

of 0.651 is shown. Thus we modify the uncorrected viscous power term 

to propose a corrected viscous power loss. 

We note that this will give much larger values of the viscous power 

ISS 

coefficient than the previous estimates, for example, for the rotor tested 

by Newman at diameter and free stream based Reynolds number of 1.9 x 105 

we get viscous term, C ,of about 0.17. This term is much larger than 
Pv 

those computed previously. 

This correction is of interest since it was derived without reference 

to the basic uncorrected result; thus if the viscous correction could be 

considered accurate,it would serve as a means of checking the inviscid 

potential theory. However, it is noted that at this point in the state 

of the art, neither the viscous correction nor the inviscid model can be 

considered sufficiently reliable to serve as a check for the other. 
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5.4 CORRELATION WITH EXPERIMENT 

Although there is a reasonable amount of test data on Savonius rotors 

(Savonius l , BachlO , Simonds and Bodekll , Mercier12 , and Newman7, it is not 

easy to use these results for comparison with the present theory. The 

reason is principally that the free tests in the natural wind involve 

necessarily poorly controlled measurements, while the wind tunnel data 

normally involves a very large and uncertain wind tunnel correction to 

convert to free ai~ data. The nature of this correction relates to two 

effects; the change in incoming flow speed, and circulation changes due 

to wall constraints. 

The Wall Constraints 

The first effect occurs with both wind axis (propeller) and cross-

~ 

wind axis machines and is accounted for by blockage (solid and wake) correc-

tions. Due to this blockage and the wall confinement, the flow speed at 

the rotor is higher than it would be in a free flow. The rotor thus 

generates forces and powers associated with higher free wind speeds than 

the nominal tunnel speed measured by instruments upstream of the working 

section. If power coefficients are computed on the nominal tunnel speed 

they must then be reduced to account for wall constraint. This correc-

tion can be appreciable since it is related to the cube of the speed, and 

the speed itself may require a 10% correction. 

The second effect occurs with cross-wind axis machines only. Here 

the device develops a cross-wind force, causing a cross-wind deflection 

of the incoming stream. As has been shown in the section on Aspect Ratio 

Effects the general effect of this deflection is to reduce the power output 

of the device. The effects of wall constraints are to reduce the wake 

deflections, so that the device tested appears to be of higher aspect 

ratio than implied by its physical dimensions. 
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A theory for tunnel corrections where there is no cross-wind force 

13 
has been given by Durand . No theory for the correction with cross-wind 

force exists, but such analysis could be developed using the finite 

span analysis given here coupled with appropriate imaging. 

We note the significant result, that both the wind speed and def1ec-

tion correction will reduce the measured wind tunnel power coefficients, 

or alternatively, the tunnel tests will always apparently give higher 

powers than those occurring in free flow. The magnitude and nature of 

this correction is discussed by Newman, and a tunnel constraint correc-

tion is applied to Newmans data, however, it is not clear whether the 

important lift induced correction has been applied, or if only the solid 

and wake blockage correction terms are used. It should also be noted that 

the test data of the different references is in general for different tunnel 

blockages, Reynolds number and Aspect Ratios as well as for different 

vane shapes. Thus it is not possible to examine the existing results for 

mutual consistency, except to note that the experiments agree to within 

about 30% for power, lift and drag coefficients. 

In order to attempt to compare the existing theory it was decided 

that the case most directly similar to the mode,l developed in the present 

paper was Rotor I of Newman7 . This rotor has vanes of semicircular cross 

section, with no gap, and is thus similar to the theoretical model used 

to determine the vane pitching moment. The heuristic viscous power correc-

tion derived in Section 5.3 is applied to the inviscid results for both the 

uniform and sheared wake models. 

Now, it is noted that although the viscous power correction was in 

fact derived from Newman we are not using a self-justifying model in 

comparing with Newman's results, since as pointed out in Section 5.3 there 

is sufficient data in Newman to permit one to estimate the viscous power 

correction without making assumptions about the inviscid power. 



Thus the total power coefficient for a semicircular rotor (S = 0.50) 

of aspect ratio 1.25 and Reynolds number 190, 000 was computed for the 

uniform and sheared wake models. This is shown in Figure 5.4.1 when it 

is compared with the test results of Newman. These results are presented 

uncorrected for tunnel wall constraints in Newman and no correction is 

given for Rotor I. Thus we have assumed the correction for Rotor I is 

the same as that for Rotor IV, since for this case tunnel and corrected 

data are given in Newman. The corrected test curve is shown in Figure 

5.4.1 but it must be recalled that the accuracy of this correction is 

very much in question. 

We reiterate that there are fundamentally two uncertainties in this 

correction. The first is that the correction given by Newman for Rotor 

IV has been used for Rotor I, although there are significant differences 

between the rotors. The second, as mentioned by Newman, is that even the 

correction for Rotor IV is open to question. For this reason we have 

shown an estimated correction band in Figure 5.4.1. 
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It will be seen by examination of Figure 5.4.1 that the present 

theory appears to approximately represent the main features of the perfor

mance but that there are significant discrepancies, both in the magnitude 

of the peak power coefficient and the tip speed ratio at which it occurs. 

The uncertainties in the tunnel corrections creates difficulty in making 

any statements about the peak power coefficient. However, the tip speed 

ratio for peak power is not as strongly affected by the tunnel correction, 

and Figure 5.4.1 suggests that the theory proposed here requires modifi

cation to increase the tip speed ratio at peak power. 

Although it is recognized that the inaccuracies described imply that 

the corrected test results for Rotor I do not constitute a very critical 

test of our analysis, we now discuss some ad hoc adjustments to the theory 

which will bring the curves into better correspondence. First we note 
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(Figure 5.4.2), assuming the viscous power correction is approximately correct 

in magnitude, that changes in Reynolds number of the magnitude associated 

with the tests, will not have a very large effect. 

Then observing (Figure 5.4.1) that the uniform wake model appears nearer 

to the test data than the sheared model we confine our attention to correcting 

the former by changing vane camber and aspect ratio. 

As expected, the magnitude of vane camber has a large effect on the 

peak power coefficient, but causes little change to the tip speed ratio 

at which this occurs, as illustrated in Figure 5.4.3. On the other hand, 

raising aspect ratio increases the power at higher tip speed ratio with 

minor changes in magnitude of peak power (Figure 5.4.4). 

It appears that a value of vane camber represented by S = 0.30 

gives a fairly good fit to the test results for Rotor I for assumed aspect 

ratios between 2.0 and 3.0. This is illustrated in Figure 5.4.5, where the 

estimated test performance of Rotor I from Figure 5.4.1 has been superimposed 

on the analytical results of Figure 5.4.4. For construction of the theoret

ical curves of Figure 5.4.5 the uniform wake model, with S = .30, and the 

proposed viscous power correction with R = 190,000 was used. It is noted 

that the actual proportion of Rotor I were S = .50, A = 1.25. Evidently 

the severe blockage will produce lift effects, so that the effective aspect 

ratio in the tunnel is increased possibly to 20, but as explained, this 

effect can not be quantitatively accounted for without developing a valid 

cross-flow power correction.' 

Thus at this stage, with the very inadequate data, it is believed that 

a pair of equations, one for the inviscid power and one for the viscous 

power correction can adequately represent the power output of the Savonius 

Rotor. The cross-wind force (lift induced) effect is large, and has a large 
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influence on the rotor performance. Separation effects also appear to be 

important but we have no information on their relative significance at dif-

ferent tip speed ratios. 

There is not enough good experimental data to check either the 

inviscid power predictions, the viscous corrections, or the tunnel wall 

corrections. However, it is believed that the analytical developments 

presented here make it possible to establish the proper form of the 

Savonius Rotor performance equations and to establish constants and 

correction terms in these equations. 
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Figure 5.4.1 Estimated Power Coefficient with Viscous Correction for Newmans 
Rotor I (6 = 0.5, AR = 1.25, Re = 190,000) 
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Figure 5.4.2 Effect of Reynolds Number on Power Coefficient CS = 0.5, AR = 1.25) 
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Figure 5.4.3 Effect of Vane Camber of Power Coefficient CAR = 1.25, Re = 190,000) 
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Figure 5.4.4 Effect of Aspect Ratio on Power Coefficient (B = 0.30, Re = 190,000) 
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Figure 5.4.5 Power Coefficient of Rotor I compared with Present Theory 
(B = 0.30, Re : 190,000) 
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